首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper deals with the delay-dependent stability of numerical methods for delay differential equations. First, a stability criterion of Runge-Kutta methods is extended to the case of general linear methods. Then, linear multistep methods are considered and a class of r(0)-stable methods are found. Later, some examples of r(0)-stable multistep multistage methods are given. Finally, numerical experiments are presented to confirm the theoretical results.  相似文献   

2.
Summary This paper deals with linear multistep methods applied to nonlinear, nonsingular Volterra integral equations of the second kind. Analogously to the theory of W.B. Gragg, the existence of asymptotic expansions in the stepsizeh is proved. Under certain conditions only even powers ofh occur. As a special case, the midpoint rule is treated, a short numerical example for the applicability to extrapolation techniques is given.  相似文献   

3.
This paper is devoted to a study of nonlinear stability of general linear methods for the numerical solution of delay differential equations in Hilbert spaces. New stability concepts are further introduced. The stability properties of (k,p,q)-algebraically stable general linear methods with piecewise constant or linear interpolation procedure are investigated. We also discuss stability of linear multistep methods viewed as a special subset of the class of general linear methods.  相似文献   

4.
A class of cyclic linear multistep methods suitable for the approximate numerical integration of stiff systems of first order ordinary differential equations is developed. Particular attention is paid to the problem of deriving schemes which are almostA-stable, self starting, have relatively high orders of accuracy and contain a built in error estimate. These requirements demand that the linear multistep methods which are used are solved iteratively rather than directly in the usual way and an efficient method for doing this is suggested. Finally the algorithms are illustrated by application to a particular test problem.  相似文献   

5.
Stability properties of implicit-explicit (IMEX) linear multistep methods for ordinary and delay differential equations are analyzed on the basis of stability regions defined by using scalar test equations. The analysis is closely related to the stability analysis of the standard linear multistep methods for delay differential equations. A new second-order IMEX method which has approximately the same stability region as that of the IMEX Euler method, the simplest IMEX method of order 1, is proposed. Some numerical results are also presented which show superiority of the new method.   相似文献   

6.
Cash  J. R. 《Numerische Mathematik》1981,37(3):355-370
Summary Recently there has been considerable interest in the approximate numerical integration of the special initial value problemy=f(x, y) for cases where it is known in advance that the required solution is periodic. The well known class of Störmer-Cowell methods with stepnumber greater than 2 exhibit orbital instability and so are often unsuitable for the integration of such problems. An appropriate stability requirement for the numerical integration of periodic problems is that ofP-stability. However Lambert and Watson have shown that aP-stable linear multistep method cannot have an order of accuracy greater than 2. In the present paper a class of 2-step methods of Runge-Kutta type is discussed for the numerical solution of periodic initial value problems.P-stable formulae with orders up to 6 are derived and these are shown to compare favourably with existing methods.  相似文献   

7.
Stability analysis of some representative numerical methods for systems of neutral delay-differential equations (NDDEs) is considered. After the establishment of a sufficient condition of asymptotic stability for linear NDDEs, the stability regions of linear multistep, explicit Runge-Kutta and implicitA-stable Runge-Kutta methods are discussed when they are applied to asymptotically stable linear NDDEs. Some mentioning about the extension of the results for the multiple delay case is given.  相似文献   

8.
In this paper, we present a class of A(α)-stable hybrid linear multistep methods for numerical solving stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The method considered uses a second derivative like the Enright’s second derivative linear multistep methods for stiff IVPs in ODEs.  相似文献   

9.
This paper is concerned with the numerical solution to initial value problems of nonlinear delay differential equations of neutral type. We use A-stable linear multistep methods to compute the numerical solution. The asymptotic stability of the A-stable linear multistep methods when applied to the nonlinear delay differential equations of neutral type is investigated, and it is shown that the A-stable linear multistep methods with linear interpolation are GAS-stable. We validate our conclusions by numerical experiments.  相似文献   

10.
In this paper inverse linear multistep methods for the numerical solution of second order differential equations are presented. Local accuracy and stability of the methods are defined and discussed. The methods are applicable to a class of special second order initial value problems, not explicitly involving the first derivative. The methods are not convergent, but yield good numerical results if applied to problems they are designed for. Numerical results are presented for both the linear and nonlinear initial value problems.  相似文献   

11.
The paper is concerned with the numerical stability of linear delay integro-differential equations (DIDEs) with real coefficients. Four families of symmetric boundary value method (BVM) schemes, namely the Extended Trapezoidal Rules of first kind (ETRs) and second kind (ETR $_2$ s), the Top Order Methods (TOMs) and the B-spline linear multistep methods (BS methods) are considered in this paper. We analyze the delay-dependent stability region of symmetric BVMs by using the boundary locus technique. Furthermore, we prove that under suitable conditions the symmetric schemes preserve the delay-dependent stability of the test equation. Numerical experiments are given to confirm the theoretical results.  相似文献   

12.
Multistep collocation methods for initial value problems in ordinary differential equations are known to be a subclass of multistep Runge-Kutta methods and a generalisation of the well-known class of one-step collocation methods as well as of the one-leg methods of Dahlquist. In this paper we derive an error estimation method of embedded type for multistep collocation methods based on perturbed multistep collocation methods. This parallels and generalizes the results for one-step collocation methods by Nørsett and Wanner. Simple numerical experiments show that this error estimator agrees well with a theoretical error estimate which is a generalisation of an error estimate first derived by Dahlquist for one-leg methods.  相似文献   

13.
A boundary value appraoch to the numerical solution of initial value problems by means of linear multistep methods is presented. This theory is based on the study of linear difference equations when their general solution is computed by imposing boundary conditions. All the main stability and convergence properties of the obtained methods are investigated abd compared to those of the classical multistep methods. Then, as an example, new itegration formulas, called extended trapezoidal rules, are derived. For any order they have the same stability properties (in the sense of the definitions given in this paper) of the trapezoidal rule, which is the first method in this class. Some numerical examples are presented to confirm the theoretical expectations and to allow us to trust a future code based on boundary value methods.  相似文献   

14.
In this paper, we propose a new class of multistep collocation methods for solving nonlinear Volterra Integral Equations, based on Hermite interpolation. These methods furnish an approximation of the solution in each subinterval by using approximated values of the solution, as well as its first derivative, in the r previous steps and m collocation points. Convergence order of the new methods is determined and their linear stability is analyzed. Some numerical examples show efficiency of the methods.  相似文献   

15.
This paper presents a sufficient condition on the contractivity of theoretical solution for a class of nonlinear systems of delay differential equations with many variable delays(MDDEs), which is weak,compared with the sufficient condition of previous articles.In addition,it discusses the numerical stability properties of a class of special linear nmltistep methods for this class nonlinear problems.And it is pointed out that not only the backwm‘d Euler method but also this class of linear multistep methods are GRNm-stable if linear interpolation is used.  相似文献   

16.
Summary. In this work we address the issue of integrating symmetric Riccati and Lyapunov matrix differential equations. In many cases -- typical in applications -- the solutions are positive definite matrices. Our goal is to study when and how this property is maintained for a numerically computed solution. There are two classes of solution methods: direct and indirect algorithms. The first class consists of the schemes resulting from direct discretization of the equations. The second class consists of algorithms which recover the solution by exploiting some special formulae that these solutions are known to satisfy. We show first that using a direct algorithm -- a one-step scheme or a strictly stable multistep scheme (explicit or implicit) -- limits the order of the numerical method to one if we want to guarantee that the computed solution stays positive definite. Then we show two ways to obtain positive definite higher order approximations by using indirect algorithms. The first is to apply a symplectic integrator to an associated Hamiltonian system. The other uses stepwise linearization. Received April 21, 1993  相似文献   

17.
建立了广义中立型延迟系统理论解渐近稳定的充分条件 ,分析了用线性多步方法求解广义中立型延迟系统数值解的稳定性 ,在一定的Lagrange插值条件下 ,证明了数值求解广义中立型系统的线性多步方法NGPG_稳定的充分必要条件是线性多步方法是A_稳定的·  相似文献   

18.
This paper aims to investigate the asymptotic stability of linear multistep (LM) methods for linear differential-algebraic equations (DAEs) with multiple delays. Based on the argument principle, we first establish the delay-dependent stability criteria of analytic solutions; then, we propose some practically checkable conditions for weak delay-dependent stability of numerical solutions derived by implicit LM methods. Lagrange interpolations are used to compute the delayed terms. Several numerical examples are given to illustrate the theoretical results.  相似文献   

19.
This paper is devoted to investigating the nonlinear stability properties of linear multistep methods for the solution to neutral delay differential equations in Banach space. Two approaches to numerically treating the “neutral term” are considered, which allow us to prove several results on numerical stability of linear multistep methods. These results provide some criteria for choosing the step size such that the numerical method is stable. Some examples of application and a numerical experiment, which further confirms the main results, are given.  相似文献   

20.
This paper is concerned with the stability of theoretical solution and numerical solutionof a class of nonlinear differential equations with piecewise delays.At first,a sufficientcondition for the stability of theoretical solution of these problems is given,then numericalstability and asymptotical stability are discussed for a class of multistep methods whenapplied to these problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号