首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deep level transient spectroscopy (DLTS) and high-frequency capacitance-voltage (HF-CV) measurement are used for the investigation of HfAlO/p-Si interface. The so-called “slow” interface states detected by HF-CV are obtained to be 2.68 × 1011 cm−2. Combined conventional DLTS with insufficient-filling DLTS (IF-DLTS), the true energy level position of interfacial traps is found to be 0.33 eV above the valance band maximum of silicon, and the density of such “fast” interfacial traps is 1.91 × 1012 cm−2 eV−1. The variation of energy level position of such traps with different annealing temperatures indicates the origin of these traps may be the oxide-related traps very close to the HfAlO/Si interface. The interfacial traps’ passivation and depassivation effect of postannealing in forming gas are shown by comparing samples annealed at different temperatures.  相似文献   

2.
Polymethyl methacrylate (PMMA) is one of the most commonly used optical materials. However, the application of it in the area of optical communication is strongly limited by the intrinsic absorption loss of carbon-hydrogen stretching vibration. In this paper, we present a method to solve the problem by adopting the hollow-core fibers with cobweb cladding structure. The fibers use a single dielectric material and may solve the problem of structural support. Thus the feasibility of the “OmniGuide” fibers is improved, while a series of advantages of the “OmniGuide” hollow-core fiber are retained. It is promising that a fiber with low transmission loss, high bandwidth, large-core, and low costs can be designed and fabricated using PMMA. At the same time, a very broad range of the wavelengths (from visible to near infrared region, for instance, wavelengths at 0.65-1.12 μm, and even 1.30 μm, 1.54 μm and their neighbors) may be adopted for signal wavelength.  相似文献   

3.
Temperature control of hyperthermia treatments is generally implemented with multipoint feedback system comprised of phased-array transducer, which is complicated and high cost. Our simulations to the acoustic field induced by a self-focused concave spherical transducer (0.5 MHz, 9 cm aperture width, 8.0 cm focal length) show that the distribution of temperature can keep the same “cigar shape” in the focal region during ultrasound insonation. Based on the characteristic of the temperature change, a two-dimensional model of a “cigar shape” tumor is designed and tested through numerical simulation. One single-point on the border of the “cigar shape” tumor is selected as the control target and is controlled at the temperature of 43 °C by using a self-tuning regulator (STR). Considering the nonlinear effects of biological medium, an accurate state-space model obtained via the finite Fourier integral transformation to the bioheat equation is presented and used for calculating temperature. Computer simulations were performed with the perfusion rates of 2.0 kg/(m3 s) and 4.5 kg/(m3 s) to the different targets, it was found that the temperatures on the border of the “cigar shape” tumor can achieve the desired temperature of 43 °C by control of one single-point. A larger perfusion rate requires a higher power output to obtain the same temperature elevation under the same insonation time and needs a higher cost for compensating the energy loss carried away by blood flow after steady state. The power output increases with the controlled region while achieving the same temperature at the same time. Especially, there is no overshoot during temperature elevation and no oscillation after steady state. The simulation results demonstrate that the proposed approach may offers a way for obtaining a single-point, low-cost hyperthermia system.  相似文献   

4.
We demonstrate that in addition to their role in tuning the wavelength of an N-stage hybrid liquid-crystal Šolc filter, liquid-crystal cells can also be used to vary the transmission bandwidth of such filter around any of the tuned wavelength. This bandwidth tuning is based on the variation of the number of stages by what we call here an “optical cancelling technique”. This is achieved by varying the birefringence of the liquid-crystal cells whose optical path difference switches between two particular values. We show that for a 10-stage filter and at λi = 1.532 μm, the calculated 3-dB bandwidth varies from 2.6 to 11.8 nm when the number of “optically-cancelled” hybrid plates increases from 0 to 8. During the tuning process, the contrast ratio remains equal to that of the equivalent classical Šolc filter.  相似文献   

5.
Doinikov AA  Haac JF  Dayton PA 《Ultrasonics》2009,49(2):269-1403
A general theoretical approach to the development of zero-thickness encapsulation models for contrast microbubbles is proposed. The approach describes a procedure that allows one to recast available rheological laws from the bulk form to a surface form which is used in a modified Rayleigh-Plesset equation governing the radial dynamics of a contrast microbubble. By the use of the proposed procedure, the testing of different rheological laws for encapsulation can be carried out. Challenges of existing shell models for lipid-encapsulated microbubbles, such as the dependence of shell parameters on the initial bubble radius and the “compression-only” behavior, are discussed. Analysis of the rheological behavior of lipid encapsulation is made by using experimental radius-time curves for lipid-coated microbubbles with radii in the range 1.2-2.5 μm. The curves were acquired for a research phospholipid-coated contrast agent insonified with a 20 cycle, 3.0 MHz, 100 kPa acoustic pulse. The fitting of the experimental data by a model which treats the shell as a viscoelastic solid gives the values of the shell surface viscosity increasing from 0.30 × 10−8 kg/s to 2.63 × 10−8 kg/s for the range of bubble radii, indicated above. The shell surface elastic modulus increases from 0.054 N/m to 0.37 N/m. It is proposed that this increase may be a result of the lipid coating possessing the properties of both a shear-thinning and a strain-softening material. We hypothesize that these complicated rheological properties do not allow the existing shell models to satisfactorily describe the dynamics of lipid encapsulation. In the existing shell models, the viscous and the elastic shell terms have the linear form which assumes that the viscous and the elastic stresses acting inside the lipid shell are proportional to the shell shear rate and the shell strain, respectively, with constant coefficients of proportionality. The analysis performed in the present paper suggests that a more general, nonlinear theory may be more appropriate. It is shown that the use of the nonlinear theory for shell viscosity allows one to model the “compression-only” behavior. As an example, the results of the simulation for a 2.03 μm radius bubble insonified with a 6 cycle, 1.8 MHz, 100 kPa acoustic pulse are given. These parameters correspond to the acoustic conditions under which the “compression-only” behavior was observed by de Jong et al. [Ultrasound Med. Biol. 33 (2007) 653-656]. It is also shown that the use of the Cross law for the modeling of the shear-thinning behavior of shell viscosity reduces the variance of experimentally estimated values of the shell viscosity and its dependence on the initial bubble radius.  相似文献   

6.
A 1 × 2 optical switch using only one multimode interference (MMI) region is designed and demonstrated in GaAs/AlGaAs. This design makes a single MMI region works as MMI coupler using paired interference at “off” state and symmetric interference at “on” state. By injecting a current of 110 mA, the measured on/off ratio and crosstalk are 23 dB and 33 dB, respectively in the demonstrated device with GaAs/GaAlAs.  相似文献   

7.
Liang Sun  Feng-yun Guo  Li-li Liu  Wei Cai  Yu-heng Xu 《Optik》2009,120(11):514-518
OH-absorption properties of the optical damage region in a series of codoped In/Mg:LiNbO3 crystals with various Li/Nb ratios have been investigated. The OH-associated vibrational peak at 3507 cm−1 is confirmed to occur in crystals with Li/Nb ratio of 0.94. For codoped In/Mg:LiNbO3 crystals with Li/Nb ratio of 1.05 and 1.20, the OH-associated vibrational peaks are detected at 3536 and 3507 cm−1 as well. A new peak at 3518 cm−1 attributed to a (InNb)2−-OH-(MgNb)3− defect center is revealed in crystals with Li/Nb ratio 1.38. When the “In-Mg threshold” concentration is reached, the optical damage resistance ability of codoped In/Mg:LiNbO3 crystals is greatly improved.  相似文献   

8.
Li Niu  Jia-Qi Zhu  Xiao Han  Wei Gao 《Physics letters. A》2009,373(29):2494-2500
The structural, electronic and vibrational properties of a series of heavily B-doped diamond models have been investigated using the density functional theory within a local density approximation. The doped models C64 − nBn (n=1-3) were constructed using supercell techniques. The structural and electronic calculations confirmed that the B dimers are always energetically stable and electrical inactive. The superconducting transition temperature TC is not only decided by the B concentration, but also by the lattice configurations of boron atoms. The vibrational frequencies and eigenmodes were determined using the linear response approach, while Raman intensities were obtained by the second response method. The Raman analysis in terms of atomic vibrations found that the “500 cm−1” and “1230 cm−1” bands are both superposed bands including not only C vibrations but also B-B vibrations and B-C vibrations, respectively. The calculated Raman spectra with isotopic substitutions are in excellent agreement with corresponding experimental results. The reasonable explanation was provided for no obvious Raman shift of main bands from 10B12C to 11B12C model.  相似文献   

9.
We have investigated a high-resolution Fourier transform (FT) absorption spectrum of the 13CH3OH isotopomer of methanol from 400 to 950 cm−1 with the “Ritz” program. We present the assignments of 7160 transitions, 3021 of which belong to A-symmetry, and 4139 to E-symmetry. These transitions occur between states labeled by K quantum numbers up to 14, and by torsional quantum numbers n up to 4. The “Ritz” program evaluated the energies of the 4684 involved levels with an accuracy of the order of 10−4 cm−1. All of the assigned lines correspond to transitions involving torsionally excited levels within the ground small-amplitude vibrational state.  相似文献   

10.
The potential-induced (1 × 1) → “hex” transition on Au(1 0 0) electrodes in 0.01 M Na2SO4 + 1 mM HCl was studied by in situ scanning tunneling microscopy at high time resolution (Video-STM). According to these observations the elementary units of the “hex” surface reconstruction, hexagonally-ordered strings in the Au surface layer, are highly dynamic nanoscale objects. Isolated “hex” strings exhibit dynamic fluctuations in structure and position on the millisecond timescale. These fluctuations exceed the mobility of multistring “hex” domains by several orders of magnitude and can be explained by collective dynamic processes within the strings. Furthermore, the observations reveal a novel 1D mass transport mechanism along the strings, details on the nucleation and growth of “hex” strings and complex string restructuring processes, facilitating “hex” domain ripening.  相似文献   

11.
R. Friedberg 《Annals of Physics》2008,323(5):1087-1105
We propose that the smallness of the light quark masses is related to the smallness of the T (i.e. CP) violation in hadronic weak interactions. Accordingly, for each of the two quark sectors (“upper” and “lower”) we construct a 3 × 3 mass matrix in a bases of unobserved quark states, such that the “upper” and “lower” basis states correspond exactly via the W± transitions in the weak interaction. In the zeroth approximation of our formulation, we assume T conservation by making all matrix elements real. In addition, we impose a “hidden symmetry” (invariance under simultaneous translations of all three basis quark states in each sector), which ensures a zero mass eigenstate in each sector.Next, we simultaneously break the hidden symmetry and T invariance by introducing a phase factor eiχ in the interaction for each sector. The Jarlskog invariant JCKM, as well as the light quark masses are evaluated in terms of the parameters of the model. Comparing formulas, we find that most unknown factors drop out, resulting in a simple relation with , to leading order in χ and ms/mb, with A, λ the Wolfenstein parameters. (Because of the large top quark mass, the contribution from upper quark sector can be neglected.) Setting JCKM = 3.08 × 10−5, mb = 4.7 GeV (1s mass), ms = 95 MeV, A = 0.818, and λ = 0.227, we find , consistent with the accepted value md = 3 − 7 MeV.We make a parallel proposal for the lepton sectors. With the hidden symmetry and in the approximation of T invariance, both the masses of e and ν1 are zero. The neutrino-mapping matrix Vν is shown to be of the same Harrison-Perkins-Scott form which is in agreement with experiments. We also examine the correction due to T violation, and evaluate the corresponding Jarlskog invariant Jν.  相似文献   

12.
A simple thermal chemical vapor deposition technique is employed for the pyrolysis of a natural precursor “camphor” and deposition of carbon films on alumina substrate at higher temperatures (600-900 °C). X-ray diffraction measurement reveals the amorphous structure of these films. The carbon films properties are found to significantly vary with the deposition temperatures. At higher deposition temperature, films have shown predominately sp2-bonded carbon and therefore, higher conductivity and lower optical band gap (Tauc gap). These amorphous carbon (a-C) films are also characterized with Raman and X-ray photoelectron spectroscopy. In addition, electrical and optical properties are measured. The thermoelectric measurement shows these as-grown a-C films are p-type in nature.  相似文献   

13.
The infrared (IR) electroluminescence (EL) of erbium-doped spark-processed silicon (sp-Si) was investigated. For this, a device was constructed which consisted of a silicon wafer on which an erbium layer was vapor deposited, followed by spark-processing and rapid thermal annealing for 15 min at 900 °C in air. The metallization consisted of a 200 nm Ag layer (above the spark-processed area) and a 50 nm thick Al film (on the “back side”), containing a window through which the light could escape. Maximal light emission occurred near 1.55 μm, that is, at a wavelength where commonly used fiber optical materials have their minimum in energy loss. The processing parameters for most efficient light emission were an Er thickness of 200-300 nm, a spark-processing time of about 30 s, an n-type Si wafer having a low (3-5 Ω cm) resistivity, an operating temperature near room temperature, and an operating voltage between 25 and 40 V under reverse bias. The results are interpreted by postulating an energy transfer from sp-Si to the Er3+ ions involving the first excited state 4I13/2 to ground state 4I15/2. Further, impact excitation and hot electrons that are accelerated into the erbium doped sp-Si by the applied field (100 kV/cm) are considered.  相似文献   

14.
Polarized infrared reflectivity measurements between 300 and 10 K have been carried out on charge density waves (CDW) conductor blue bronze Tl0.3MoO3. Three important features are observed: (i) A bump at 1155 cm−1 in the reflectivity spectra of Tl0.3MoO3 at 300 K is a precursor of the Peierls gap due to optical excitations across a pseudogap, and this kind of Peierls-like gap opens gradually with decreasing temperature from 180 to 160 K. (ii) The three sharp modes as “triplet” of infrared reflectivity between 800 and 1000 cm−1 of Tl0.3MoO3 along [1 0 2] axis show red shift compared to K0.3MoO3 and Rb0.3MoO3, which is assigned to the increase of the distance of Mo-O bond with the substitution of thallium ions. (iii) Two peaks at about 514 and 644 cm−1 in the far-infrared reflectivity spectra of Tl0.3MoO3 along [1 0 2] direction are suggested to be the electronic transitions from the valence band to the midgap state and from occupied midgap state to the conduction band, respectively.  相似文献   

15.
X-ray photoelectron spectroscopy and atomic force microscopy were used to examine the chemical composition and surface morphology of InAs(1 1 1)A surface chemically etched in isopropanol-hydrochloric acid solution (HCl-iPA) and subsequently annealed in vacuum in the temperature range 200-500 °C. Etching for 2-30 min resulted in the formation of “pits” and “hillocks” on the sample surface, respectively 1-2 nm deep and high, with lateral dimensions 50-100 nm. The observed local formations, whose density was up to 3 × 108 cm−2, entirely vanished from the surface after the samples were vacuum-annealed at temperatures above 300 °C. Using a direct method, electron beam microanalysis, we have determined that the defects of the hillock type includes oxygen and excessive As, while the “pits” proved to be identical in their chemical composition to InAs. Vacuum anneals were found to cause a decrease in As surface concentration relative to In on InAs surface, with a concomitant rise of surface recombination rate.  相似文献   

16.
Assuming that different energy dissipation mechanisms are at work along hysteresis, a hysteresis loss subdivision procedure has been proposed, using the induction at maximum permeability (around 0.8 T, in electrical steels) as the boundary between the “low-induction” and the “high-induction” regions. This paper reviews the most important results obtained in 10 years of investigation of the effect of microstructure on these components of the hysteresis loss. As maximum induction increases, the “low-induction loss” increases linearly up to 1.2 T, while the “high-induction loss” is zero up to 0.7 T and then increases as a power law with n=5. Low-induction loss behavior is linearly related to Hc between 0.4 and 1.2 T. Grain size has a larger influence on low-induction losses than on high-induction losses. Texture has a much stronger influence on high loss than on low-induction loss, and it is related to the average magnetocrystalline energy. 6.5%Si steel shows smaller hysteresis loss at 1.5 T than 3.5%Si steel only because of its smaler high-induction component. The abrupt increase in hysteresis loss due to very small plastic deformation is strongly related to the high-induction loss component. These results are discussed in terms of energy dissipation mechanisms such as domain wall movement, irreversible rotation and domain wall energy dissipation at domain nucleation and annihilation.  相似文献   

17.
We present an alternative, but equivalent, approach to the regularization of the reference problem in the J-matrix method of scattering. After identifying the regular solution of the reference wave equation with the “sine-like” solution in the J-matrix approach we proceed by direct integration   to find the expansion coefficients in an L2L2 basis set that ensures a tridiagonal representation of the reference Hamiltonian. A differential equation in the energy is then deduced for these coefficients. The second independent solution of this equation, called the “cosine-like” solution, is derived by requiring it to pertain to the L2L2 space. These requirements lead to solutions that are exactly identical to those obtained in the classical J-matrix approach. We find the present approach to be more direct and transparent than the classical differential approach of the J-matrix method.  相似文献   

18.
Dynamic viscoelastic properties (G′ and G′′), ultrasonic shear velocity and attenuation were measured for aqueous solutions of sorbitol at 5 MHz. For pure sorbitol, the shear ultrasonic velocity reached 1470 m s−1 with a density of 1500 kg m−3, consequently leading to a high acoustical impedance compared with “classical” polymers (polystyrene, nylon, polyethylene, Teflon, etc.). We demonstrate that this surprisingly high shear ultrasonic velocity for a viscoelastic material was due to the fact that the glass transition begins at a concentration above 85% of sorbitol in water. Hence, pure sorbitol is an ideal coupling material for high frequency shear experiments.  相似文献   

19.
We discuss a more general class of phantom (p < −?) cosmologies with various forms of both phantom (w < −1), and standard (w > −1) matter. We show that many types of evolution which include both Big-Bang and Big-Rip singularities are admitted and give explicit examples. Among some interesting models, there exist non-singular oscillating (or “bounce”) cosmologies, which appear due to a competition between positive and negative pressure of variety of matter content. From the point of view of the current observations the most interesting cosmologies are the ones which start with a Big-Bang and terminate at a Big-Rip. A related consequence of having a possibility of two types of singularities is that there exists an unstable static universe approached by the two asymptotic models—one of them reaches Big-Bang, and another reaches Big-Rip. We also give explicit relations between density parameters Ω and the dynamical characteristics for these generalized phantom models, including higher-order observational characteristics such as jerk and “kerk.” Finally, we discuss the observational quantities such as luminosity distance, angular diameter, and source counts, both in series expansion and explicitly, for phantom models. Our series expansion formulas for the luminosity distance and the apparent magnitude go as far as to the fourth-order in redshift z term, which includes explicitly not only the jerk, but also the “kerk” (or “snap”) which may serve as an indicator of the curvature of the universe.  相似文献   

20.
Protein dynamics is studied on metmyoglobin by Mössbauer investigations with synchrotron radiation, conventional Mössbauer spectroscopy and incoherent neutron scattering. In the center of interest is the time sensitivity of mean square displacements, 〈x2〉 of special atoms in the protein molecule. Phonon assisted Mössbauer effect labels internal vibrations at the heme iron on a time scale from 6.5 fs to 0.65 ps. The incoherent neutron scattering yields quasi diffusive motions of side chain hydrogens on a time scale faster 100 ps. The quasi diffusive broad lines in the Mössbauer spectrum indicate slow motions of larger segments of the molecule between about 100 ns and 100 ps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号