首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A theoretical study of the temperature dependent noise effects of praseodymium-doped fiber amplifiers (PEDFAs) has been examined. The Pr3+-doped ZBLAN fiber amplifier pumped at 1017 nm and Pr3+-doped GeGa-sulfied fiber amplifier pumped at 1028 nm are chosen. The temperature-dependent rate and propagation equation related to four-level system consideration which is based on the population difference among amplification levels has been used. The population difference depends on pump and signal powers, Boltzman factor KB, cross-sections, noise figure (NF) and Pr3+ concentration. The numerical results obtained over the temperature range from −20 °C to + 60 °C are used to present an analytical expression for the signal gain and noise figure effects in PDFAs length and noise figure with input pump power. The amplified spontaneous emission (ASE) has been taken into account.  相似文献   

2.
Rajneesh Kaler 《Optik》2011,122(5):440-443
In this paper, we compare the Gain and Noise figure characteristics of physical EDFAs and Compact EDFAs in an optical system consisting of cascade of both the amplifiers. We demonstrate the gain, noise figure variations of a forward pumped EDFA and Compact EDFAs as functions of Er3+ fiber length, injected pump power and up-conversion co-efficient. It is observed that the gain becomes constant when the length of both the amplifiers reaches above 20 m. The comparison shows that the higher gain with flatter output is obtained in case of Compact EDFAs than Physical EDFAs in a system consisting of chain of both the amplifiers. It is further investigated that the agreement between the Compact and Physical EDFA models is good up to 10 m with the no up-conversion co-efficient. Also, the noise figure obtained in case of Physical EDFA is higher than Compact EDFAs when same amplifier length is more than 20 m and then becomes constant for both the amplifiers.  相似文献   

3.
The paper proposes a novel two stage L-band erbium doped fiber amplifier with forward–backward pumping scheme for transmission of 32 wavelength division multiplexed (WDM) channels. It is gain clamped with an in-line fiber Bragg grating (FBG) to provide flat gain over 45 nm by restricting and reutilizing amplified spontaneous emission (ASE). We demonstrate that it provides an efficient small signal gain with minimum noise figure of over 20 dB and 5.5 dB, respectively, in the L-band region (1565–1610 nm) by comparing with its forward and backward pumped counterparts with fixed Er3+ fiber length of 20 m for −30 dBm/channel input power. We also obtain the gain and noise figure dependence as a function of each of the Er3+ fiber lengths, pump power (both 1480 and 980 nm), and temperature. Hence a 10 nm region (1580–1590 nm) has been acknowledged where temperature variations become constricted for 30 °C variations (15–45 °C).  相似文献   

4.
To obtain the temperature-sensitive rate equations, a new energy level diagram of Praseodymium ion (Pr3+) in a glass host is modelled. By solving the modified rate equations, an analytical expression is presented to investigate the temperature dependence of the signal gain of a praseodymium-doped fiber amplifier (PDFA). It is seen that a change in the signal gain slightly depends on the variation of the distribution of Pr3+-ions in transitions 3F4 ↔ 3F3 with the temperature. Numerical calculations are carried out for the temperature range which is changing from −20 to +60 °C. Pr3+-doped ZBLAN fiber amplifier pumped at 1017 nm and Pr3+-doped sulfide fiber amplifier pumped at 1028 nm are selected as an application for the 1.3 μm signal wavelengths. It is also seen that the prediction of the model is in good agrement with their experimental results.  相似文献   

5.
The L-band erbium-doped fiber amplifier (EDFA) of low noise figure and high clamped-gain using gain-clamped and double-pass configuration is presented in this paper. A total of five different configurations of EDFAs by reflection scheme with single forward pumping schemes are examined and compared here. Among these configurations, we first find the configuration of 1480-nm pumped L-band EDFA with optimum gain and noise figure value. To further minimize the gain variation, a fiber Bragg grating (FBG) with 1615-nm center wavelength and 1-nm bandwidth is determined and added in double-pass L-band EDFA. The gain variation and maximum noise figure of EDFA while channel dropping is investigated. As the number of channel dropping from 32 to 4, the L-band type-A EDFA keep the variation of gain within 2.9 dB and the maximum noise figure below 5 dB with each channel’s input power of −23 dBm.  相似文献   

6.
ZnO films doped with Ga (GZO) of varying composition were prepared on Corning glass substrate by radio frequency magnetron sputtering at various deposition temperatures of room temperature, 150, 250 and 400 °C, and their temperature dependent photoelectric and structural properties were correlated with Ga composition. With increasing deposition temperature, the Ga content, at which the lowest electrical resistivity and the best crystallinity were observed, decreased. Films with optimal electrical resistivity of 2-3 × 10−4 Ω cm and with good crystallinity were obtained in the substrate temperature range from 150 to 250 °C, and the corresponding CGa/(CGa + CZn) atomic ratio was about 0.049. GZO films grown at room temperature had coarse columnar structure and low optical transmittance, while films deposited at 400 °C yielded the highest figure of merit (FOM) due to very low optical absorption despite rather moderate electrical resistivity slightly higher than 4 × 10−4 Ω cm. The optimum Ga content at which the maximum figure of merit was obtained decreased with increasing deposition temperature.  相似文献   

7.
By means of the interpolation and iteration methods to deal with the rate equations and the light propagation equations for the Er3+/Yb3+ codoped waveguide amplifier (EYCDWA), the gain characteristics in the forward, backward, and bidirectional pumped styles are analyzed. In order to obtain high gain, some parameters such as waveguide length, dopant concentration, pump power, and signal power are optimized. The results show that the pump power and signal power are about 50 mW and 1 mW, respectively, the gain is about 6.5 dB for the 2.0 cm-long EYCDWA with an Er3+ ion concentration of 1.5 × 1026 m–3 and Yb3+ ion concentration of 1.9 × 1027 m–3. Moreover, the upconversion is investigated for the designed device.  相似文献   

8.
Nanocrystalline lithium ferrite (LiFe5O8) powders have been synthesized by oxalate precursor route. The effects of Fe3+/Li+ mole ratio, and annealing temperature on the formation, crystalline size, morphology and magnetic properties were systematically studied. The Fe3+/Li+ mole ratio was controlled from 5 to 3.33 while the annealing temperature was controlled from 600 to 1100 °C. The resultant powders were investigated by differential thermal analyzer (DTA), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). DTA results showed that LiFe5O8 phase started to form at around 520 °C. XRD indicated that LiFe5O8 phase always contained α-Fe2O3 impurity and the hematite phase formation increased by increasing the annealing temperature ?850 °C for different Fe3+/Li+ mole ratios 5, 4.55 and 3.85. Moreover, lithium ferrite phase was formed with high conversion percentage at critical annealing temperature 750–800 °C. Single well crystalline LiFe5O8 phase was obtained at Fe3+/Li+ mole ratio 3.33 and annealing temperatures from 800 to 1000 °C. Maximum saturation magnetization (68.7 emu/g) was achieved for the formed lithium ferrite phase at Fe3+/Li+ mole ratio 3.33 and annealing temperature 1000 °C.  相似文献   

9.
Performance of a Bismuth-based Erbium-doped fiber amplifier is experimentally and theoretically investigated using 1480 nm pumping with double-pass scheme. In the theoretical analysis, the rate and power propagation equations are solved to examine the optimum length for the C-band operation as well as the gain and noise figure characteristics. The calculated small signal gain is 38 dB with gain variation of less than 3 dB. The measured gain is 4 dB lower due to spurious reflections which were ignored in the theoretical analysis. At input signal power of 0 dBm, a gain of 14.5 dB is obtained experimentally with gain variation of less than 1 dB within the wavelength region from 1530 to 1565 nm. The noise figure is less than 12 dB within this region.  相似文献   

10.
Nanocrystalline CeO2 particles were firstly prepared by two-stage non-isothermal precipitation, i.e. precipitating at 70 °C and aging at another temperature. Experimental results showed that the intermediates at the end of precipitation stage were needle-like mixtures of Ce3+-Ce4+ compounds. The subsequent aging temperature played an important role on the shape and size of final products. As the aging temperature suddenly reduced to 0 °C, the resultant particles retained their original needle-like structure via the topotactic mechanism, which cannot be obtained by isothermal precipitation. As raising the aging temperature above 50 °C, the products were hexagonal and grown up with increasing temperature via the dissolution-recrystallization mechanism. Moreover, all products were cubic-fluorite structured CeO2 with negligible Ce3+ content. As compared to the nanohexagons (aged at 90 °C), the nanoneedles (aged at 0 °C) exhibited an unordinary red shift in the UV absorption and possessed a smaller bandgap energy.  相似文献   

11.
The use of short lengths of large core phosphate glass fibre, doped with high concentrations of Er or Er:Yb represents an attractive route to achieving high power erbium doped fibre amplifiers (EDFAs) and lasers (EDFLs). With the aim of investigating the potential of achieving diffraction limited output from such large core fibres, we present experimental results of fundamental mode propagation through a 20 cm length of passive 300 μm core multimode fibre when the input is a well-aligned Gaussian beam. Through careful control of fibre geometry, input beam parameters and alignment, we measured an output M2 of 1.1 ± 0.05. The fibre had a numerical aperture of 0.389, implying a V number of 236.8. To our knowledge, this is the largest core fibre through which diffraction limited fundamental mode propagation has been demonstrated. Although the results presented here relate to undoped fibre, they do provide the practical basis for a new generation of EDFAs and EDFLs.  相似文献   

12.
The gain characteristics of ErxY2 − xSiO5 waveguide amplifiers have been investigated by solving rate equations and propagation equations. The gain at 1.53 μm as a function of waveguide length, Er3+ concentration and pump power is studied pumping at three different wavelengths of 654 nm, 980 nm and 1480 nm, respectively. The optimum Er3+ concentrations of 1 × 1021 cm− 3-2 × 1021 cm− 3 with the high gain are obtained for all three pump wavelengths. Pumping at 654 nm wavelength is shown to be the most efficient one due to weak cooperative upconversion. A maximum 16 dB gain at 1 mm waveguide length under a 30 mW pump with Er3+ concentration of 1 × 1021 cm− 3 is demonstrated pumping at 654 nm wavelength.  相似文献   

13.
BaAl2O4:Eu2+,Nd3+,Gd3+ phosphors were prepared by a combustion method at different initiating temperatures (400–1200 °C), using urea as a comburent. The powders were annealed at different temperatures in the range of 400–1100 °C for 3 h. X-ray diffraction data show that the crystallinity of the BaAl2O4 structure greatly improved with increasing annealing temperature. Blue-green photoluminescence, with persistent/long afterglow, was observed at 498 nm. This emission was attributed to the 4f65d1–4f7 transitions of Eu2+ ions. The phosphorescence decay curves were obtained by irradiating the samples with a 365 nm UV light. The glow curves of the as-prepared and the annealed samples were investigated in this study. The thermoluminescent (TL) glow peaks of the samples prepared at 600 °C and 1200 °C were both stable at ∼72 °C suggesting that the traps responsible for the bands were fixed at this position irrespective of annealing temperature. These bands are at a similar position, which suggests that the traps responsible for these bands are similar. The rate of decay of the sample annealed at 600 °C was faster than that of the sample prepared at 1200 °C.  相似文献   

14.
The nanobaskets of SnO2 were grown on in-house fabricated anodized aluminum oxide pores of 80 nm diameter using plasma enhanced chemical vapor deposition at an RF power of 60 W. Hydrated stannic chloride was used as a precursor and O2 (20 sccm) as a reactant gas. The deposition was carried out from 350 to 500 °C at a pressure of 0.2 Torr for 15 min each. Deposition at 450 °C results in highly crystalline film with basket like (nanosized) structure. Further increase in the growth temperature (500 °C) results in the deterioration of the basket like structure and collapse of the alumina pores. The grown film is of tetragonal rutile structure grown along the [1 1 0] direction. The change in the film composition and bonded states with growth temperature was evident by the changes in the photoelectron peak intensities of the various constituents. In case of the film grown at 450 °C, Sn 3d5/2 is found built up of Sn4+ and O-Sn4+ and the peaks corresponding to Sn2+ and O-Sn2+ were not detected.  相似文献   

15.
In this paper, extensive experimental results on broad-band double cladding Er3+-Yb3+ co-doped superfluorescent fiber sources (SFSs), characterizing their output power, mean wavelength, and bandwidth (BW) stability with variations of pump power, pump wavelength, and fiber temperature, have been reported. For a 55-cm fiber, SFS power from 3.7755 (maximum BW condition of more than 80 nm) to 9.1837 mW (maximum power condition, BW is about 34 nm) has been achieved. The SFS mean wavelength dependence on pump wavelength is highly pump temperature sensitive, and can be reduced to zero in a chosen pump temperature field. The intrinsic variation of the SFS mean wavelength λm with fiber temperature is also measured, and a linear variation from 15 to 45 °C with a slop of −0.053 nm/°C for Lf = 100 cm and −0.04 nm/°C for Lf = 55 cm is found.  相似文献   

16.
Population inversion between the 3H4 and the 3F4 excited states of Tm3+ ions responsible for the 1.5 μm emission in Tm3+ singly doped (0.5%) and Tm3+, Ho3+-codoped fluoride (ZBLAN) glasses and its dependence on the Ho3+ concentration (x=0.2-1%) was investigated by means of numerical solution of the rate equations system for continuous pumping at 797 nm. Mean lifetimes of donor and acceptor states were evaluated by using the integration method applied to the best fitting of fluorescence curves previously reported. Lifetime values were used to obtain the rate constants of all non-radiative energy-transfer processes involved and a complete set of rate equations better describing the observations was given. The rate equations were solved by numerical method and the population inversion between the 3H4 and the 3F4 excited states of Tm3+ was calculated to examine the beneficial effects on the gain associated with Ho3+ codoping. The results have shown that Tm3+ population inversion is reached only for high Ho3+-codoping (?0.3 mol%). Highest population inversion (∼1.6×1018 Tm3+ ions cm−3) was obtained in Tm(0.5%), Ho(1%)-codoped (ZBLAN) pumped by 2.8 kW cm−2. This population inversion density is ∼6.4 times higher than that one observed in Tm:Tb:GLKZ, Tm:Tb:Ge-Ga-As-S-CsBr and Tm:Ho:Ge-Ga-As-S-CsBr for a similar pumping condition (∼2.5×1017 cm−3). In addition, Tm(0.5%):Ho(1%):ZBLAN presents the highest population inversion that linearly increases with the pumping intensity; this behavior does not show saturation effect at least for the maximum intensity of 12 kW cm−2 employed. The use of 1 mol% of Ho3+-codoping maximizes the potential gain of Tm3+-doped (0.5%) ZBLAN to produce stimulated emission near 1.5 μm, making this material suitable for using it as fiber optical amplifier and/or fiber laser operating in 1.4-1.5 μm region of the spectrum.  相似文献   

17.
Barium hexaferrite BaFe12O19 powders have been synthesized using the modified co-precipitation method. Modification was performed via the ultrasonication of the precipitated precursors at room temperature for 1 h and the additions of the 2% KNO3, surface active agents and oxalic acid. The results revealed that single phase magnetic barium hexaferrite was formed at a low annealing temperature of 800 °C for 2 h with the Fe3+/Ba2+ molar ratio 8. The microstructure of the powders appeared as a homogeneous hexagonal platelet-like structure using 2% KNO3 as the crystal modifier. A saturation magnetization (60.4 emu/g) was achieved for the BaFe12O19 phase formed at 1000 °C for 2 h with Fe3+/Ba2+ molar ratio 8 using 5 M NaOH solution at pH 10 in the presence of 2% KNO3. Moreover, the saturation magnetization was 52.2 emu/g for the precipitated precursor at Fe3+/Ba2+ molar ratio 12 in was achieved for the precipitated precursor ultrasonicated for 1 h and then annealed at 1200 °C for 2 h. Coercivities from 956.9 to 4558 Oe were obtained at different synthesis conditions.  相似文献   

18.
Rare earth doped NaLa(WO4)2 nanoparticles have been prepared by a simply hydrothermal synthesis procedure. The X-ray diffraction (XRD) pattern shows that the Eu3+-doped NaLa(WO4)2 nanoparticles with an average size of 10-30 nm can be obtained via hydrothermal treatment for different time at 180 °C. The luminescence intensity of Eu3+-doped NaLa(WO4)2 nanoparticles depended on the size of the nanoparticles. The bright upconversion luminescence of the 2 mol% Er3+ and 20 mol% Yb3+ codoped NaLa(WO4)2 nanoparticles under 980 nm excitation could also be observed. The Yb3+-Er3+ codoped NaLa(WO4)2 nanoparticles prepared by the hydrothermal treatment at 180 °C and then heated at 600 °C shows a 20 times stronger upconversion luminescence than those prepared by hydrothermal treatment at 180 °C or by hydrothermal treatment at 180 °C and then heated at 400 °C.  相似文献   

19.
The Cr-doped zinc oxide (Zn0.97Cr0.03O) nanoparticles were successfully synthesized by sol-gel method. The relationship between the annealing temperature (400 °C, 450 °C, 500 °C and 600 °C) and the structure, magnetic properties and the optical characteristics of the produced samples was studied. The results indicate that Cr (Cr3+) ions at least partially substitute Zn (Zn2+) ions successfully. Energy dispersive spectroscopy (EDS) measurement showed the existence of Cr ion in the Cr-doped ZnO. The samples sintered in air under the temperature of 450 °C had single wurtzite ZnO structure with prominent ferromagnetism at room temperature, while in samples sintered in air at 500 °C, a second phase-ZnCr2O4 was observed and the samples were not saturated in the field of 10000 Oe. This indicated that they were mixtures of ferromagnetic materials and paramagnetic materials. Compared with the results of the photoluminescence (PL) spectra, it was reasonably concluded that the ferromagnetism observed in the studied samples was originated from the doping of Cr in the lattice of ZnO crystallites.  相似文献   

20.
Nanocrystalline octahedra of cobalt ferrite CoFe2O4 powders were synthesized using the organic acid precursor route. The effect of the calcination temperature, Fe3+/Co2+ molar ratio, calcination time and type of organic acid (oxalic, benzoic and tartaric acids) on the formation, crystallite size, microstructure and magnetic properties was studied systematically. The Fe3+/Co2+ molar ratio was varied from 2 to 1.739 while the annealing temperature was controlled from 400 to 1000 °C for various periods from 0.5 to 2 h. The resulting powders were investigated using X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). XRD results indicate that a well crystallized, single spinel cobalt ferrite phase was formed for the precursors annealed at 600-800 °C for 2 h, using oxalic and tartaric acids as precursors for Fe3+/Co2+ molar ratio 1.818. The crystallite size of as-formed powders was in the range of 38.0-92.6 nm at different operating conditions. The calcination temperature and Fe3+/Co2+ molar ratio have a significant effect on the microstructure of the produced cobalt ferrite. The microstructure of the produced powders was found to be octahedra-shaped. The crystalline, pure cobalt ferrite powders with magnetic properties having a maximum saturation magnetization (76.1 emu/g) was achieved for the single phase at Fe3+/Co2+ molar ratio 1.818 and annealing temperature of 600 °C for 2 h using tartaric acid precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号