首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the purpose of easily analyzing and designing the transmittance performance of a sinusoidal surface microstructure, the validity of effortless methods including scalar diffraction theory and effective medium theory has been evaluated quantitatively by the comparison of diffraction efficiencies predicted from scalar theory and effective indices theory, respectively, with exact results calculated with the rigorous vector method of Fourier modal method. Generally speaking, when the normalized period of surface microstructure is less than ten wavelengths of the incident light the scalar diffraction theory is believed to be inaccurate for designing and analyzing the diffraction efficiency of surface microstructure. But, in this paper, it is found that scalar diffraction theory can be used for predicting transmittance of the optical elements when the normalized period is more than three wavelengths of incident light within the error less than 5% at normal incidence. In addition, it is generally recognized that the effective medium theory is inaccurate for analyzing periodic surface microstructure when the normalized period is more than a tenth of the wavelength of incident light. However, the results in this study shows that effective medium theory is accurate as only zero-order waves are to propagate through the surface profiles, which the maximum difference between zero-order effective indices method and rigorous vector method reaches to 1%. Besides, the limitation of both simplified theories is dependent on not only the normalized period of a surface microstructure but also the normalized groove depth. Therefore, the range of applied validity of scalar theory and effective medium theory is expanded quantitatively compared to that of previous inaccuracy application for more easily designing and analyzing a sinusoidal surface microstructure.  相似文献   

2.
Cr-doped SiC films are prepared by the RF-magnetron sputtering technique on Si substrates with a composite target of a single-crystalline SiC containing several Cr pieces on the surface. The as-deposited films are annealed in the temperature of 1000 °C under nitrogen ambient. The structure of the samples has been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and Raman scattering measurement. The results show that the SiC crystal is formed and that majority of Cr doped in the SiC resulted in the formation of the C clusters. Then the photoluminescence (PL) spectra of the samples are observed in the visible range at room temperature. The optical properties of the samples have also been discussed briefly. We attribute the origin of the 412-nm PL band to a kind of C cluster center.  相似文献   

3.
The aim of this work is to study the dynamic formation and dissociation of trions and excitons in double barrier resonant tunneling diodes. We propose a system of rate equations that takes into account the formation, dissociation and annihilation of these complexes inside the quantum well. From the solutions of the coupled equations, we are able to study the modulation of excitons and trions formation in the device as a function of the applied bias. The results of our model agree qualitatively with the experiments showing the viability of these rate equations system to study the dynamics of complex systems.  相似文献   

4.
In this paper, zinc oxide (ZnO) and cerium-doped zinc oxide (ZnO:Ce) films were deposited by reactive chemical pulverization spray pyrolysis technique using zinc and cerium chlorides as precursors. The effects of Ce concentration on the structural and optical properties of ZnO thin films were investigated in detail. These films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) measurements. All deposited ZnO layers at the temperature 450 °C are polycrystalline and indicate highly c-axis oriented structure. The dimension of crystallites depends on incorporation of Ce atoms into the ZnO films. The photoluminescence spectra of the films have been studied as a function of the deposition parameters such as doping concentrations and post grows annealing. Photoluminescence spectra were measured at the temperature range from 13 K to 320 K.  相似文献   

5.
Au crystal columns embedded in SiO2 with an average length of 480 nm and diameter of 30 nm were prepared by radio frequency co-sputtering technique with glancing angle. The photoluminescence (PL) of the Au-SiO2 crystal column film exhibited polarization characteristic. With an increase of the laser power, the slope ∂ log(PL intensity)/∂ log(laser power) changed from 2 to 3, which indicated that the PL of Au-SiO2 crystal columns were induced by two- and three-photon absorption, respectively.  相似文献   

6.
SiC films doped with aluminum (Al) were prepared by the rf-magnetron sputtering technique on p-Si substrates with a composite target of a single crystalline SiC containing several Al pieces on the surface. The as-deposited films were annealed in the temperature range of 400-800 °C under nitrogen ambient. The thin films have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results show that the introduction of Al into films hinders crystalline formation process. And with the increase of annealing temperature, more Si particles are formed in the films, which strongly affect the optical absorption properties. The photoluminescence (PL) spectra of the samples show two peaks at 370 nm and 412 nm. The intensities of the PL peaks are evidently improved after Al doped. We attribute the origin of the two PL peaks to a kind of Si-related defect centres. The obtained results are expected to have important applications in modern optoelectronic devices.  相似文献   

7.
The spatial luminescence distribution hi the ZnO micro-crystallite fihns deposited on silicon substrates by CVD at room tempezature is investigated by the cathedolumineseence (CL) image. It has been observed that the CL image of the samples constitutes a certain pattern. The UV emission pattern projective to the (0001) face of ZnO grains consists of a series of lines nearby the grain boundaries . The included angles between any two adjacent lines are almost 120°. What is more, some luminescent lines form a close hexagon similar to ZnO crystalline structure. Such a local distribution propety shows that the UV emission on as-grown ZnO crystallite should be due to some local defects congregated to {1010} facets of ZnO grain rather than free exciton recombination.  相似文献   

8.
We have measured absorption, photoluminescence, and photoluminescence excitation spectra, and the photoluminescence time response for films of silylene-biphenylene copolymer, ((C6H4)2(Si(CH3)2)m)n with m=1,2,4, and 6. The excitation spectra clearly reveal that the lowest absorption band in each copolymer consists of two bands, i.e., a band at 4.7 eV and a band of which energy depends on m. Since the latter band is absent in the copolymer with m=1, the former band is attributed to the lowest ππ* transition in biphenylene subunits. The latter band is attributed to the lowest σσ* transition in the silylene subunits, considering its dependence on m. In contrast to the result for solution, the peak energy of photoluminescence band is independent of m. The band has a Stokes shift of more than 1 eV and a large band width of 0.5 eV. The time responses of photoluminescence intensity consist of more than two decay components and the intensity decays more slowly at smaller energy. The large Stokes shift is explained as due to excimer formation between biphenylene subunits. In order to explain the energy dependence of time responses, energy migration is discussed.  相似文献   

9.
Photoluminescence (PL) spectra and time-resolved PL are measured from around 10 to 300 K for the InGaN/GaN single quantum wells (SQWs) with well widths of 1.5, 2.5, 4 and 5 nm. For the SQWs with the well widths of 1.5 and 2.5 nm, the peak position of PL exhibits an S-shaped shift with increasing temperature. The radiative recombination time τRAD begins to increase at the temperature for the position to change from the red-shift to the blue-shift. The steep increase of τRAD is observed beyond the temperature from the blue-shift to the red-shift. For the SQWs with the well widths of 4 and 5 nm, the peak position of PL exhibits a monotonic red-shift. τRAD decreases at first and then increases with temperature. It is about 100-times longer in the low temperature region and about 10-times longer at room temperature as compared with those of the SQWs with narrower widths.  相似文献   

10.
We propose a class of graded colloidal crystalline materials which consist of polydisperse metallodielectric nanoshells stacked in layers. We take the Lekner-Lishchuk summation method to treat the graded systems which are not tractable by conventional approach such as Ewald-Kornfeld methods. It is demonstrated that this kind of graded materials exhibit a series of sharp peaks, which merge in a broadened resonant absorption band in the optical region, in contrast to colloidal crystal containing monodisperse nanoshells or nanoparticles. Effects of various gradient profiles of the ratio of the inner/outer radii in the nanoshells and lattice geometries on the optical properties are discussed. These materials are not hard to fabricate by contemporary nanofabrication techniques and they shall be useful in the engineering of optical nanomaterials.  相似文献   

11.
In this work, silicon nanocrystals (Si-nc) embedded in a silicon-rich silicon oxide (SRSO) matrix doped with Er3+ ions for different erbium and silicon concentrations have been deposited by electron-cyclotron resonance plasma-enhanced chemical-vapor-deposition (ECR-PECVD) technique. Their optical properties have been investigated by photoluminescence (PL) and reflectance spectroscopy.Room temperature emission bands centered at ∼1.54 and at 0.75 μm have been obtained for all samples. The most intense emission band at ∼1.54 μm was obtained for samples with concentrations of 0.45% and 39% for erbium and silicon, respectively. Moreover, it has been found that the broad emission band centered at ∼0.75 μm for all samples shows a very strong interference pattern related to the a specific sample structure and a high sample quality.  相似文献   

12.
We have investigated the origin of room temperature photoluminescence from ion-beam synthesized Ge nanocrystals (NCs) embedded in SiO2 using steady state and time-resolved photoluminescence (PL) measurements. Ge NCs of diameter 4-13 nm were grown embedded in a thermally grown SiO2 layer by Ge+ ion implantation and subsequent annealing. Steady state PL spectra show a peak at ∼2.1 eV originating from Ge NCs and another peak at ∼2.3 eV arising from ion-beam induced defects in the SiO2 matrix. Time-resolved PL studies reveal double exponential decay dynamics on the nanoseconds time scale. The faster component of the decay with a time constant τ1∼3.1 ns is attributed to the nonradiative lifetime, since the time constant reduces with increasing defect density. The slower component with time constant τ2∼10 ns is attributed to radiative recombination at the Ge NCs. Our results are in close agreement with the theoretically predicted radiative lifetime for small Ge NCs.  相似文献   

13.
Shape controllable synthesis of ZnO nanorod arrays via vapor phase growth   总被引:4,自引:0,他引:4  
ZnO nanorod arrays with peculiar morphologies were synthesized on (111)-oriented Si substrate and glass via a vapor phase growth. The morphology of the individual nanorod can be flat-headed bottle-like, and needle-like, which depends on the deposition positions relative to the source materials in the presence of a controlling element Se. In addition, the arrays of all the three morphologies exhibit good alignment and high coverage. This fabrication technique can be also used to direct the controllable growth of other nanomaterials with similar morphologies.  相似文献   

14.
We reveal that stimulated Raman process can be one of the effective ways to compensate the energy loss intrinsic to the optical modes in waveguides composed of left-handed metamaterial. We evaluate the effect of the energy compensating process by using the guided mode’s wave functions multiplied by the envelope functions, which describe the stimulated Raman energy compensating process. Such an evaluation shows that the energy of the optical signal mode in the waveguide with lossy left-handed media can successfully be compensated.  相似文献   

15.
Nanoparticles of the II-V semiconductor (ZnP2) were prepared and investigated. ZnP2 nanoparticles were incorporated into zeolite Na-X matrix. Absorption, diffuse reflection (DR) and photoluminescence (PL) spectra of ZnP2 nanoparticles were measured at the temperature of 77 K. Five bands B1-B5 are observed in both the DR and PL spectra demonstrating the blue shift from the line of free exciton in bulk crystal. We attribute the B1-B5 bands to five stable nanoparticles with size less than the size of zeolite Na-X supercage. We observed Stokes shift of the PL bands with respect to the absorption bands. This dependence of this Stokes shift on the particle size is nonmonotonic.  相似文献   

16.
Si quantum dots (QDs) embedded in SiO2 can be normally prepared by thermal annealing of SiOx (x < 2) thin film at 1100 °C in an inert gas atmosphere. In this work, the SiOx thin film was firstly subjected to a rapid irradiation of CO2 laser in a dot by dot scanning mode, a process termed as pre-annealing, and then thermally annealed at 1100 °C for 1 h as usual. The photoluminescence (PL) intensity of Si QD was found to be enhanced after such pre-annealing treatment. This PL enhancement is not due to the additional thermal budget offered by laser for phase separation, but attributed to the production of extra nucleation sites for Si dots within SiOx by laser irradiation, which facilitates the formation of extra Si QDs during the subsequent thermal annealing.  相似文献   

17.
The review of results on nanoparticles formation is presented under laser ablation of Ag, Au, and Cu-containing solid targets in liquid environments (H2O, C2H5OH, C2H4Cl2, etc.). X-ray diffractometry (XRD), UV-vis optical transmission spectrometry, and high resolution transmission electron microscopy (HRTEM) characterize the nanoparticles. The morphology of nanoparticles is studied as the function of both laser fluence and nature of the liquid. The possibility to control the shape of nanoparticles by ablation of an Au target by an interference pattern of two laser beams is demonstrated. Formation of alloyed Au-Ag and Ag-Cu nanoparticles is reported under laser exposure of a mixture of individual nanoparticles. The effect of internal segregation of brass nanoparticles is discussed due to their small lateral dimensions. The factors are discussed that determine the distribution function of particles size under laser ablation. The influence of laser parameters as well as the nature on the liquid on the properties of nanoparticles is elucidated.  相似文献   

18.
SiOx films were deposited on Si(1 0 0) substrates by evaporation of SiO powder. The samples were annealed from room-temperature (RT) to 1100 °C. After the samples were cooled down to RT, photoluminescence (PL) spectra from these samples were measured. It was found that when the annealing temperature Ta is not higher than 1000 °C, there is a PL centered at 620 nm, and with Ta increasing the intensity increases at first and then decreases when Ta is higher than 500 °C. When Ta is no less than 1000 °C another PL peak located at 720 nm appears. Combined with Raman and XRD spectra, we confirm that the latter PL is from Si nanocrystals that start to form when Ta is higher than 1000 °C. PL spectra for Ta<900 °C were discussed in detail and was attributed to defects in the matrix rather than from Si clusters.  相似文献   

19.
This work demonstrates that by combining three methods with different mechanisms to enhance the photoluminescence (PL) intensity of Si nanocrystals embedded in SiO2 (or Si-nc:SiO2), a promising material for developing Si light sources, a very high PL intensity can be achieved. A 30-layered sample of Si-nc:SiO2/SiO2 was prepared by alternatively evaporating SiO and SiO2 onto a Si(1 0 0) substrate followed by thermal annealing at 1100 °C. This multilayered sample possessed a fairly high PL efficiency of 14% as measured by Greenham's method, which was 44 times that of a single-layered one for the same amount of excess Si content. Based on this multilayered sample, treatments of CeF3 doping and hydrogen passivation were subsequently applied, and a high PL intensity which was 167 times that of a single-layered one for the same amount of excess Si content was achieved.  相似文献   

20.
Amorphous SiOx thin films with four different oxygen contents (x=1.15, 1.4, 1.5, and 1.7) have been prepared by thermal evaporation of SiO in vacuum and then annealed at 770 or 970 K in argon for various times ?40 min. The influence of annealing conditions and the initial film composition on photoluminescence (PL) from the annealed films has been explored. Intense room temperature PL has been observed from films with x?1.5, visible with a naked eye. It has been shown that PL spectra of most samples consists of two main bands: (i) a ‘green’ band centered at about 2.3 eV, whose position does not change with annealing conditions and (ii) an ‘orange-red’ band whose maximum moves from 2.1 to 1.7 eV with increasing annealing time and temperature and decreasing initial oxygen content. These observations have been explained assuming recombination via defect states in the SiOx matrix for the first band and emission from amorphous Si nanoparticles for the second one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号