首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We propose and demonstrate experimentally a stabilized and wavelength-selective erbium-doped fiber ring laser in single-longitudinal-mode operation with Fabry-Perot laser diode (FP-LD) and using a tunable bandpass filter (TBF) inside and outside a Sagnac ring cavity. The side-mode suppression ratios of 21 dB and 36.5 dB and the output power of -3.6 dB m and -8.7 dB m in the wavelengths of 1524.45-1562.35 nm and 1531.07-1562.35 nm with the tuning step of 1.4 nm can be achieved when the TBF outside and inside Sagnac loop, respectively. The output wavelength variation of zero and the output power fluctuation of <0.1 dB are also obtained. Moreover, the transmission efficiency of the ring laser has also been performed experimentally under a 1.25, 2.5 and 10 Gb/s external modulation, respectively.  相似文献   

2.
A multiwavelength fiber ring laser that is based on an S-band erbium-doped fiber amplifier (EDFA) and a semiconductor optical amplifier (SOA) is developed. An optical switch is used to switch the multiwavelength fiber laser between S-band and L-band. This fiber laser can stably lase seven wavelengths in the S-band or 28 wavelengths in the L-band. Additionally, the lasing wavelengths with a signal-to-noise ratio of over 33 dB and a wavelength spacing of 100 GHz are demonstrated experimentally. The average powers of the lasing wavelength in the S-band and the L-band are −7.53 and −12.15 dBm, respectively.  相似文献   

3.
A stable and narrow wavelength spacing multiwavelength erbium-doped fiber laser is proposed and demonstrated. The laser can produce simultaneous dual- and triple-wavelength lasing oscillations with a narrow wavelength spacing of less than 0.1 nm via using a single fiber Bragg gratings written in polarization-maintaining (PM) fiber. By adjusting polarization controller, the wavelength spacing of dual-wavelength lasing oscillations can be tuned to as small as 0.032 nm. The maximum amplitude variation for every lasing wavelength is less than 0.5 dB. The room-temperature operation principle is based on the polarization hole burning and deeply saturated effect in an ordinary erbium-doped fiber ring laser (EDFRL). The laser has the advantages of simple all-fiber configuration, low cost, high stability and operating at room temperature.  相似文献   

4.
Frequency-switchable microwave signals are optically generated using a dual-wavelength single-longitudinal-mode erbium-doped fiber ring laser. The splitting of the resonance peak is observed in fiber grating-based Fabry-Perot (F-P) filters depending on the injected light polarization states. Choosing two different resonance peaks of the grating-based F-P filter and using a variable saturable absorber formed by a section of incompletely transparent erbium-doped fiber, wavelength-switchable dual-wavelength single longitudinal-mode operation is achieved in the fiber ring laser. Microwave frequency switched among 8.75, 21.25 and 25.4 GHz is implemented by feeding the output laser to a high-speed photodetector.  相似文献   

5.
A stable and broad bandwidth multiwavelength erbium-doped fiber laser is proposed and demonstrated successfully. A nonlinear optical loop mirror which induces wavelength-dependent cavity loss and behaves as an amplitude equalizer is employed to ensure stable room-temperature multiwavelength operation. Up to 50 wavelengths lasing oscillations with wavelength spacing of 0.8 nm within a 3-dB spectral range of 1562-1605 nm has been achieved. The measured power fluctuation of each wavelength is about 0.1 dB within a 2-h period.  相似文献   

6.
Without the need of any other additional filtering device, a triple-wavelength switchable erbium-doped fiber ring laser based on Sagnac loop mirror incorporating a piece of few-mode high birefringence fiber is newly proposed and experimentally demonstrated. Three potential lasing wavelengths at about 2.0 nm interval with the side mode suppression ratio higher than 40 dB can be switched mainly by adjusting a polarization controller next to the few-mode high birefringence fiber in the Sagnac loop. In addition to the stable single-line lasing operation, simultaneous dual- and triple-line oscillations are also highly stable at room temperature with suppressing the intrinsic homogeneous gain broadening of the erbium-doped fiber.  相似文献   

7.
D. Liu  N.Q. Ngo  D. Liu 《Optics Communications》2009,282(8):1611-6860
A stable dual-wavelength erbium-doped fiber laser with a linear cavity is formed by a polarization-maintaining uniform fiber Bragg grating (PM-FBG) and a polarization-maintaining linearly chirped fiber Bragg grating (PM-LCFBG), both of which were fabricated on a high-birefringence (Hi-Bi) fiber. Experimental results show stable dual-wavelength lasing operation with a wavelength separation of ∼0.22 nm, which can be tuned down to as small as 0.05 nm and a large optical signal-to-noise ratio (OSNR) of over 40 dB under room-temperature. Microwave signal at frequency of 9.41, 18.03 and 27.46 GHz is achieved by heterodyned the output lasing wavelengths on a photodetector.  相似文献   

8.
A tunable and switchable single-longitudinal-mode (SLM) dual-wavelength fiber laser incorporating a reconfigurable dual-pass Mach-Zehnder interferometer (MZI) filter was proposed and demonstrated, which can be applied in microwave generation. By incorporating a high extinction ratio (ER) dual-pass MZI into an erbium-doped fiber ring cavity, SLM dual-wavelength lasing can be achieved even using a MZI with relatively little free spectrum range (FSR), and by beating the two wavelengths at a photodetector, a 9.76 GHz microwave signal with a 3-dB bandwidth of less than 10 kHz is obtained. Moreover, by direct linking the two outputs of the MZI, the high ER dual-pass MZI is easily reconfigured as a half FSR dual-pass MZI. Using this structure, switchable SLM dual-wavelength lasing can be conveniently realized.  相似文献   

9.
A switchable erbium-doped fiber-ring laser providing dual-wavelength outputs with orthogonal polarizations when operating at room temperature is proposed. One polarization-maintaining fiber Bragg grating (PMFBG) in a Sagnac loop interferometer is used as the wavelength-selective filter. Due to the enhancement of the polarization hole burning (PHB) by the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The optical signal-to-noise ratio (OSNR) is over 42 dB. The amplitude variation over 90 min is less than 0.6 dB for both wavelengths.  相似文献   

10.
We propose and demonstrate a novel switchable quadruple-wavelength erbium-doped fiber ring laser (EDFL) based on two-segment Lyot-Sagnac filter which is used as the wavelength-selective filter. Due to the deeply saturated spectral hole-burning (SHB) effect in an ordinary erbium-doped fiber, the laser realizes stable single-wavelength, dual-wavelength, triple-wavelength, and quadruple-wavelength output by controlling two polarization controllers (PCs) appropriately. The optical signal-to-noise ratio (OSNR) is over 30 dB. The peak fluctuation is less than ~2 dB over 1.5 h at room temperature.  相似文献   

11.
In the paper, a ring double-Brillouin-frequency spaced multi-wavelength Brillouin erbium-doped fiber laser based on non-linear amplified fiber loop mirror filter is demonstrated, in which the non-linear amplified fiber loop mirror (AFLMF) is used as a filter. At the 980 nm pump power of 10.29 dBm, the tunable laser source center wavelength of 1563 nm and power of −3 dBm, up to 12 even output channels with 0.16 nm spacing are achieved. At the same time, we study the influence of 980 nm pump power, the polarization controller and the tunable laser source center wavelength on the number of Stokes light wave.  相似文献   

12.
We demonstrate a fiber ring laser with a dispersion compensation fiber (DCF) and a delayed interferometer (DI) with temperature control, which is able to switch eleven wavelengths one by one. In ring cavity, DCF supplies different effective cavity lengths for different wavelengths, DI generates a wavelength comb corresponding to the ITU grid, a flat-gain erbium-doped fiber amplifier (EDFA) provides uniform gain for each lasting wavelength, and a semiconductor optical amplifier (SOA) not only acts as active modulator, but also alleviates homogeneous broadening effect of EDFA. Stable pulse trains with a pulsewidth about 40 ps at 10 GHz have been obtained by injecting external optical control signals into the laser. Wavelength switching process among eleven wavelengths is achieved by merely tuning an intracavity optical delay line.  相似文献   

13.
A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.  相似文献   

14.
We report a high-power dual-wavelength Yb-doped double-clad fiber laser based on a few-mode fiber Bragg grating (FMFBG). The FMFBG was fabricated by using a piece of fiber in a length of fiber with a cutoff wavelength of 1225 nm, which supported two modes at 1060 nm. The laser was pumped by a fiber pigtailed laser diode working at 915 nm. Single-wavelength, dual-wavelength and triple-wavelength laser oscillations were observed when the fiber laser operated under different low pump powers. However, stable dual-wavelength operation was achieved at higher pump power of 3.9 W and remained unchanged until the output power reached 5.67 W under the maximum available pump power of 10.7 W. The laser wavelengths were centered at 1059.12 and 1060.80 nm with a full-width at half-maximum of 37 and 43 pm, respectively. The signal-to-noise-ratio was greater than 50 dB and the beam quality factor (M2) was about 1.9.  相似文献   

15.
Medium-power, single-mode, single-wavelength fiber laser working at room temperature using a polarization-maintaining erbium-ytterbium co-doped fiber as the gain medium, and an un-pumped elliptical core erbium-doped fiber as a saturable absorber to reduce linewidth and mode hopping of the lasing wavelength is reported. The effects of length, erbium ion concentration, and polarization-maintaining property of the saturable absorber were explored. The output power of the laser was more than 100 mW and the lasing line was stable for more than 3 h with an intensity fluctuation of less than 0.2 dB. The laser linewidth (FWHM = Full width at half maximum) was 7.5 MHz and the signal to noise ratio was more than 50 dB. The output of the laser was measured using an optical spectrum analyzer (OSA) of resolution 1.25 GHz and a scanning Fabry-Perot spectrum analyzer (SFPSA) of resolution 6.7 MHz.  相似文献   

16.
We have demonstrated a continuous-wave (CW) all fiber laser operation at 1558.4 nm of a diode-pumped erbium-doped PCF laser based on 9.6 m erbium-doped PCF. The maximum output power and the threshold of the fiber laser are 49.4 mW and 6.67 mW, respectively. We show that it is possible to achieve a high stability and beam quality laser, which has a great application potential in optical communication field in future.  相似文献   

17.
A compact and tunable erbium-doped fiber laser is demonstrated using a highly doped fiber and a microfiber knot resonator (MKR) structure which is laid on the surface of a small peltier. The MKR functions as both a reflector and a tunable filter where tunability is achieved by varying the temperature of the resonator by heating the peltier. A stable laser output is achieved at the 1533 nm region with an optical signal to noise ratio (OSNR) of 27 dB using a 65 mW of 980 nm pump power. The operating wavelength of the laser can be tuned from 1532.60 nm to 1533.49 nm as the temperature is increased from the room temperature of 24 to 90 °C. It is observed that the operating wavelength shifts to a longer wavelength as the temperature increases with an efficiency of 12.4 pm/°C. This is due to the thermally induced optical phase shift attributable to the changes in effective refractive index and optical path length of the MKR loop.  相似文献   

18.
An erbium-doped fiber laser (EDFL) constructed in a master oscillator and power amplifier (MOPA) configuration is analyzed. The pump powers for the fiber cavity laser and the booster amplifier stages are managed properly to achieve maximal pump conversion efficiency. Our design achieves a pump conversion efficiency of 91.4%, corresponding to a quantum efficiency of 96.6%, for a 1565.8 nm MOPA laser pumped by a total power of 300 mW at 1480 nm. The optimized MOPA laser shows a 25% enhancement in the pump conversion efficiency, compared to a non-MOPA fiber laser. A side lobe suppression ratio of 48 dB for the optimized MOPA laser is observed.  相似文献   

19.
A multiwavelength laser source is demonstrated with a high power erbium-doped fiber amplifier as the gain medium. A highly nonlinear photonic crystal fiber (PCF) is inserted in the ring cavity to provide nonlinear gain by four-wave mixing. A Sagnac loop is incorporated in the ring cavity serving as a comb-like multichannel filter. The comparison between fiber ring laser without PCF and with PCF shows that the highly nonlinear PCF can generate a larger number of excited wavelengths and help stabilize the output power.  相似文献   

20.
A switchable multi-wavelength erbium-doped fiber (EDF) ring laser based on cascaded polarization maintaining fiber Bragg gratings (PMFBGs) in a Sagnac loop interferometer as the wavelength-selective filter at room temperature is proposed. Due to the polarization hole burning (PHB) enhanced by the PMFBGs, stable single-, dual-, three- and four-wavelength lasing operations can be obtained. The laser can be switched among the stable single-, dual-, three- and four-wavelength lasing operations by adjusting the polarization controllers (PCs). The optical signal-to-noise ratio (OSNR) is over 50 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号