首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work we have studied pure and thulium- and chromium-doped ZBLAN glasses irradiated by ultra-short laser pulses. A Ti:sapphire CPA system was used, producing a 500 Hz train of pulses, centered at 830 nm, with 375 μJ of energy and 50 fs of duration (FWHM). The beam was focused by a 20 mm lens, producing a converging beam with a waist of 12 μm. The absorption spectra before and after laser irradiation were obtained showing production of color centers in pure, thulium-doped and chromium-doped ZBLAN glasses. A damage threshold of 9.56 T W/cm2 was determined for ZBLAN.  相似文献   

2.
In this paper, we investigated the mechanism of crystallization induced by femtosecond laser irradiation for an amorphous Si (a-Si) thin layer on a crystalline Si (c-Si) substrate. The fundamental, SHG, THG wavelength of a Ti:Sapphire laser was used for the crystallization process. To investigate the processed areas we performed Laser Scanning Microscopy (LSM), Transmission Electron Microscopy (TEM) and Imaging Pump-Probe measurements. Except for 267 nm femtosecond laser irradiation, the crystallization occurred well. The threshold fluences for the crystallization using 800 nm and 400 nm femtosecond laser irradiations were 100 mJ/cm2 and 30 mJ/cm2, respectively. TEM observation revealed that the crystallization occurred by epitaxial growth from the boundary surface between the a-Si layer and c-Si substrate. The melting depths estimated by Imaging Pump-Probe measurements became shallower when the shorter wavelength was used.  相似文献   

3.
Periodic Au nanoparticle arrays were fabricated on silica substrates using nanosphere lithography. The identical single-layer masks were prepared by self-assembly of polystyrene nanospheres with radius R = 350 nm. The structural characterization of nanosphere masks and periodic particle arrays was investigated by atomic force microscopy. The nonlinear optical properties of the Au nanoparticle arrays were determined using a single beam z-scan method at a wavelength of 532 nm with laser duration of 55 ps. The results show that periodic Au nanoparticle arrays exhibit a fast third-order nonlinear optical response with the nonlinear refractive index and nonlinear absorption coefficient being n2 = 6.09 × 10−6 cm2/kW and β = −1.87 × 10−6 m/W, respectively.  相似文献   

4.
Nanosecond (∼100 ns) pulsed (10 Hz) Nd:YAG laser operating at the wavelength (λ) of 1064 nm with pulse energies of 0.16-1.24 mJ/cm2 has irradiated 10Sm2O3·40BaO·50B2O3 glass. It is demonstrated for the first time that the structural modification resulting the large decease (∼3.5%) in the refractive index is induced by the irradiation of YAG laser with λ=1064 nm. The lines with refractive index changes are written in the deep inside of 100-1000 μm depths by scanning laser. The line width is 1-13 μm, depending on laser pulse energy and focused beam position. It is proposed that the samarium atom heat processing is a novel technique for inducing structural modification (refractive index change) in the deep interior of glass.  相似文献   

5.
The triangular-shaped Au/ZnO nanoparticle arrays were fabricated on fused quartz substrate using nanosphere lithography. The structural characterization of the Au/ZnO nanoparticle arrays was investigated by atomic force microscopy. The absorption peak due to the surface plasmon resonance of Au particles at the wavelength of about 570 nm was observed. The nonlinear optical properties of the nanoparticle arrays were measured using the z-scan method at a wavelength of 532 nm with pulse duration of 10 ns. The real and imaginary part of third-order nonlinear optical susceptibility, Re χ(3) and Im χ(3), were determined to be 1.15 × 10−6 and −5.36 × 10−7 esu, respectively. The results show that the Au/ZnO nanoparticle arrays have great potential for future optical devices.  相似文献   

6.
We studied the spectroscopic characteristics of telluride glass with the host composition (0.85)TeO2-(0.15)WO3, containing 0.25 and 1.0 mol% thulium oxide (Tm2O3). By analyzing the absorption spectra with the Judd-Ofelt theory, the average radiative lifetimes of 305±7.5 μs and 1.95±0.02 ms were determined for the 3F4 and 3H4 levels, respectively. Measured fluorescence lifetime of the 3F4 level decreased from 218 to 51 μs for the 0.25 and 1.0 mol% Tm2O3 doped samples, respectively, indicating the effect of boosted non-radiative decay at higher doping concentrations. A similar trend was observed for the 3H4 level, where the fluorescence lifetime decreased from 1.86 ms to 350 μs at these concentrations. The quenching of the 1460 nm (3F43H4) emission in favor of the 1800 nm (3H43H6) emission due to cross relaxation was further evident in the fluorescence spectra of the samples. The calculated stimulated emission cross sections (3.73±0.1×10−21 cm2 at 1460 nm and 6.57±0.07×10−21 cm2 at 1808 nm) reveal the potential importance of the Tm3+:(0.85)TeO2-(0.15)WO3 glass for applications in fiber-optic amplifiers and fiber lasers.  相似文献   

7.
This paper reports polarized spectral properties and energy levels of Cr3+ in KAl(MoO4)2 crystal. The absorption and emission cross sections are estimated as 3.72×10-20 cm2 at 669 nm and 2.74×10-20 cm-2 at 823 nm for σ-polarization, respectively. The energy levels of Cr3+ ion in KAl(MoO4)2 crystal were calculated based on the Tanabe-Sugano theory. It is suggested that Cr3+ ions occupy at an intermediate crystal field site in Cr3+:KAl(MoO4)2.  相似文献   

8.
Silica glass was implanted with 50 keV Cu+ ions at various fluences from 6×1015 to 8×1016 ions/cm2 and thermally-annealed in air between room temperature to 1200 °C. UV/visible spectroscopy measurements reveal absorption bands at characteristics surface plasmon resonance (SPR) frequencies, signifying the formation of copper colloids in silica, even without thermal treatments. Such copper nanoclusters can be attributed to the relatively high mobility of copper atoms, even at ambient conditions. Using the equation derived from the framework of free-electron theory, the average radii of the Cu particles were found to be in the range 2-4 nm from the experimental surface plasmon absorption peaks. Radioluminescence (RL) spectra exhibited broad bands at 410 and 530 nm, associated with the presence of Cu+ ions in the as-implanted samples. The effect of thermal annealing in air on absorption and emission spectra of these Cu-implanted samples, as well as the formation of copper nanoclusters from original Cu+ ions, is discussed.  相似文献   

9.
Nanocomposite films consisting of gold nanospheres or gold nanorods embedded in a silica matrix have been prepared using a hybrid deposition technique consisting of plasma-enhanced chemical vapor deposition of SiO2 and co-sputtering of gold, followed by annealing at 900 °C. Subsequent irradiation with 30 MeV heavy ions (Cu5+) was used to form gold nanorods. Linear and nonlinear optical properties of this material are closely related with the surface plasmon resonance in the visible. The nonlinear absorption coefficient (α2@532 nm) for the films containing gold nanospheres was measured by Z-scan and P-scan techniques, and it was found to be isotropic and equal to −4.8 × 10−2 cm/W. On the contrary, gold nanorods films exhibited two distinct surface plasmon resonance absorption bands giving rise to a strong anisotropic behavior, namely a polarization-dependent linear absorption and saturable absorption. Z-scan and P-scan measurements using various light polarization directions yielded nonlinear absorption coefficient (α2@532 nm) values varying from −0.9 × 10−2 cm/W up to −3.0 × 10−2 cm/W. Linearity of the P-scan method in the context of nanocomposite saturable absorption is also discussed.  相似文献   

10.
Laser shock processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results for metal surface treatments in underwater laser irradiation at 1064 nm. A convergent lens is used to deliver 1.2 J/cm2 in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG, two laser spot diameters were used: 0.8 and 1.5 mm.Results using pulse densities of 2500 pulses/cm2 in 6061-T6 aluminum samples and 5000 pulses/cm2 in 2024 aluminum samples are presented. High level of compressive residual stresses are produced −1600 MPa for 6061-T6 Al alloy, and −1400 MPa for 2024 Al alloy. It has been shown that surface residual stress level is higher than that achieved by conventional shot peening and with greater depths. This method can be applied to surface treatment of final metal products.  相似文献   

11.
Optimization of a laser mitigation process in damaged fused silica   总被引:1,自引:0,他引:1  
One of the major concerns encountered in high power laser is the laser-induced damage of optical components. This is a main issue of the development of the Europe's biggest laser, known as Laser Méga Joule (LMJ) especially in the section where the beam wavelength is 351 nm. This study deals with the development of a laser treatment process to improve the laser damage resistance of silica optical components. First, by irradiating the component at 355 nm in the nanosecond regime, defects of the silica optic are revealed and evolve as damage. Next, the damaged sites are irradiated with a CO2 laser at a 10.6 μm wavelength in order to melt and evaporate the silica in the damage neighborhood. In this study, we performed a variation of the CO2 laser parameters to obtain the most efficient stabilization. To check this stabilization, damage resistance tests were performed with an UV laser representative of the LMJ (at 355 nm/2.5 ns). The results show that we can stabilize weak points and thereby make the component resistant to subsequent UV laser irradiation.  相似文献   

12.
A new antimony-based glass system (K2O-B2O3-Sb2O3) having low phonon energy (about 600 cm−1) doped with Sm3+ ions has been developed. Infrared reflection spectroscopic (IRRS) studies have been employed to establish its low phonon energy. Ultraviolet-Visible-near infrared (UV-Vis-NIR) absorption and photoluminescence upconversion properties with the spectrochemistry of the 15K2O-15B2O3-70Sb2O3 (mol%) glasses have been studied doping with different concentrations (0.1-1.0 wt%) of Sm2O3. UV-Vis-NIR absorption band positions have been justified with quantitative calculation of nephelauxetic parameter and covalent bonding characteristics of the host. NIR to visible upconversion has been investigated by exciting at 949 nm at room temperature. Three upconverted bands originating from the 4G5/26H5/2, 4G5/26H7/2 and 4G5/26H9/2 transitions are found to be centered at 566 (green, weak), 602 (orange, weak) and 636 (red, remarkably strong) nm, respectively. These bands have been explained from the evaluation of the absorption, normal (downconversion) fluorescence and excitation spectra. The upconversion processes have been explained by the excited state absorption (ESA), energy transfer (ET) and cross-relaxation (CR) mechanisms involving population of the metastable (storage) energy level (4G5/2) by multiphonon deexcitation effect. It is evident from the IRRS study that the upconversion phenomena are expedited by the low multiphonon relaxation rate in antimony glasses owing to their low phonon energy (602 cm−1, the main and highest intensity Sb-O-Sb stretching band) which is very close to that of fluoride glasses (500-600 cm−1).  相似文献   

13.
We report on photoluminescence and Raman studies of Xe ion-implanted diamond. Several natural and high-purity artificial diamonds implanted within the wide dose range of 1010-5×1014 ion/cm2 were studied. The room temperature luminescence of the Xe center consists of two zero phonon lines, at 813 nm (strong) and 794 nm (weak). The dose dependences of photoluminescence and Raman spectra were studied. For doses less than 1013 ion/cm2, the luminescence intensity grows with the implantation dose linearly. The defect-induced photoluminescence quenching was observed for doses equal or more than 1013 ion/cm2. Possible models of the Xe center will be discussed. The nature of damages induced by ion implantation at different doses was analyzed using micro-Raman spectroscopy.  相似文献   

14.
We report on the femtosecond laser micromachining of photo-induced embedded diffraction grating in flexible Poly (Dimethly Siloxane) (PDMS) plates using a high-intensity femtosecond (130 fs) Ti: sapphire laser (λp = 800 nm). The refractive index modifications with diameters ranging from 2 μm to 5 μm were photo-induced after the irradiation with peak intensities of more than 1 × 1011 W/cm2. The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which femtosecond laser was focused. The maximum refractive index change (Δn) was estimated to be 2 × 10−3. By the X-Y-Z scanning of sample, the embedded diffraction grating in PDMS plate was fabricated successfully using a femtosecond laser.  相似文献   

15.
PbS quantum dots of average size 10 nm are encapsulated in a matrix (polyvinyl alcohol (PVA)) following chemical route. They are irradiated with 160 MeV Ni12+ ion beam with fluences 1012-1013 ions/cm2. Red shift in the absorption response in the optical absorption spectra reveal size enhancement of the quantum dots after irradiation and was confirmed by transmission electron microscopy (TEM). Photoluminescence (PL) study was carried out with excitation wavelength 325 nm on both unirradiated and irradiated samples at different fluences and fluence-dependent surface states and excitonic emission is observed in the PL study. The Huang-Rhys coupling constant decreases significantly after swift heavy ion (SHI) irradiation and shows a decreasing trend with increase in ion fluence.  相似文献   

16.
Interactions induced in Al/Ti multilayers by implantation of Ar ions at room temperature were investgated. Initial structures consisted of (Al/Ti) × 5 multilayers deposited by d.c. ion sputtering on Si(1 0 0) wafers, to a total thickness of ∼250 nm. They were irradiated with 200 keV Ar+ ions, to the fluences from 5 × 1015 to 4 × 1016 ions/cm2. It was found that ion irradiation induced a progressed intermixing of the multilayer constituents and Al-Ti nanoalloying for the highest applied fluence. The resulting nanocrystalline structure had a graded composition with non-reacted or interdiffused Al and Ti, and γ-AlTi and AlTi3 intermetallic phases. Most intense reactivity was observed around mid depth of the multilayers, where most energy was deposited by the impact ions. It is presumed that Al-Ti chemical reaction is triggered by thermal spikes and further enhanced by chemical driving forces. The applied processing can be interesting for fabrication of tightly bond multilayered structures with gradual changes of their composition and properties.  相似文献   

17.
Infrared-to-visible upconversion fluorescence property of Er3+/Yb3+-codoped novel bismuth-germanium glass under 975 nm LD excitation has been studied. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively, were observed at room temperature. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs. The structure of the bismuth-germanium glass has been investigated by peak-deconvolution of FT-Raman spectrum, and the structural information was obtained from the peak wavenumbers. This novel bismuth-germanium glass with low maximum phonon energy (∼750 cm−1) can be used as potential host material for upconversion lasers.  相似文献   

18.
The 96GeO-(3-χ)Al2O3-χNa2O-1NaBiO3 (χ = 0, 0.5, 1.5 molar percent designated as A1, A2 and A3) and 96GeO-(3.5-ψ)Al2O3-ψNa2O-0.5Bi2O3 (ψ = 0.5, 1, 2 molar percent designated as B1, B2 and B3) glasses were prepared by conventional melting method with the measurement of their DTA curve, fluorescence decay curve, transmission, absorption and emission spectra. The near infrared superbroadband emission characteristics of the A1, A2, B1 and B2 glasses peak at ∼1220 nm were observed when pumped by an 800 nm laser diode. The stimulated emission cross section (σp) was obtained from the emission spectra. The result indicated that the introduction of Bi5+ in NaBiO3 into raw materials could increase the emission intensity of the obtained glasses by 5.6 times than that of Bi3+ in Bi2O3, and the FWHM (Δλ) and emission lifetime (τ) at 1220 nm increased from 195 nm to 275 nm, and 280 μs to 434 μs. Meanwhile, it was found that the absorption edges were blue-shifted from 486 to 447 nm by comparing those of A1 and B1. The absorption edges were considered to be ascribed to the charge transfer from Bi3+ 6s2 to Bi5+ 6s0. Therefore we could conclude that the content of Bi5+ ions in A1 was more than that in B1 glasses. It could be deduced from the emission and absorption spectra that the stronger emission intensity and wider FWHM were due to the higher concentration of Bi5+ ion in glass. In particular, the increase of Na2O content was in proportion to the thermal stability and the value of σp × τ and σp × Δλ of glasses.  相似文献   

19.
Multilayer films containing anionic iron phthalocyanine tetrasulfonate (FePcTsNa4) and cationic poly(diallydimethyl ammonium chloride) were prepared using electrostatic self-assembled layer-by-layer technique. The growth of the film was monitored by ultraviolet-visible absorption spectroscopy, and the morphology of the film was characterized by atomic force microscopy. Polarized visible spectra showed that macrocycles of FePcTsNa4 in the film presented a flat orientation relative to the plane of the solid substrates. The third-order nonlinear optical properties of the film were studied by using Z-scan technique with laser duration of 21 ps at the wavelength of 532 nm. The FePcTsNa4/PDDA film exhibited strong self-focusing effect with n2 value of 4.13 × 10−15 m2/W, which is 4 orders larger than that of FePcTsNa4 aqueous solution.  相似文献   

20.
Interdiffusion phenomena, thermal damage and ablation of W/Si and Si/W bilayers and multilayers under XeCl-excimer laser (=308 nm) irradiation at fluences of 0.15, 0.3 and 0.6 J/cm2 were studied. Samples were prepared by UHV e-beam evaporation onto oxidized Si. The thickness of W and Si layers and the total thickness of the structures were 1–20 nm and 40–100 nm, respectively. 1 to 300 laser pulses were directed to the same irradiation site. At 0.6 J/cm2 the samples were damaged even by a single laser pulse. At 0.3 J/cm2 WSi2 silicide formation, surface roughening and ablation were observed. The threshold for significant changes depends on the number of pulses: it was between 3–10 pulses and 10–30 pulses for bilayers with W and Si surfaces, respectively, and more than 100 pulses for multilayers with the same total thickness of tungsten. At 0.15 J/cm2 the periodicity of the multilayers was preserved. Temperature profiles in layered structures were obtained by numerical simulations. The observed differences of the resistance of various bilayers and multilayers against UV irradiation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号