首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonlinear optical properties and photoinduced anisotropy of an azobenzene ionic liquid-crystalline polymer were investigated. The single beam Z-scan measurement showed the polymer film possessed a value of nonlinear refractive index n2 = −1.07 × 10−9 cm2/W under a picosecond 532 nm excitation. Photoinduced anisotropy in the polymer was studied through dichroism and photoinduced birefringence. A photoinduced birefringence value Δn ∼ 10−2 was achieved in the polymer film. The mechanism for the nonlinear optical response and the physical process of photoinduced anisotropy in the polymer were discussed.  相似文献   

2.
The phase conjugation geometry of degenerate four wave mixing (DFWM) technique has been employed to study the third-order optical nonlinear susceptibility (χ3) and second-order hyperpolarizability of multi-wall carbon nanotubes (MWCNTs). MWCNTs were grown by thermal chemical vapor deposition method and, subsequently functionalized with carboxylic acid group to improve their solubility in an organic solvent, ethylene glycol. The average hyperpolarizability for each carbon atom has been found to be 4.74 × 10−46 m5/V2 for the pump pulse of 8 ns at 532 nm. Decreasing the pulse width of the pump laser decreases the average value of hyperpolarizability. The absorption spectra show a monotonous increase from IR through visible and give an opportunity to estimate the imaginary part of the χ3 by the open aperture Z-scan technique.  相似文献   

3.
Nanocomposite films consisting of gold nanospheres or gold nanorods embedded in a silica matrix have been prepared using a hybrid deposition technique consisting of plasma-enhanced chemical vapor deposition of SiO2 and co-sputtering of gold, followed by annealing at 900 °C. Subsequent irradiation with 30 MeV heavy ions (Cu5+) was used to form gold nanorods. Linear and nonlinear optical properties of this material are closely related with the surface plasmon resonance in the visible. The nonlinear absorption coefficient (α2@532 nm) for the films containing gold nanospheres was measured by Z-scan and P-scan techniques, and it was found to be isotropic and equal to −4.8 × 10−2 cm/W. On the contrary, gold nanorods films exhibited two distinct surface plasmon resonance absorption bands giving rise to a strong anisotropic behavior, namely a polarization-dependent linear absorption and saturable absorption. Z-scan and P-scan measurements using various light polarization directions yielded nonlinear absorption coefficient (α2@532 nm) values varying from −0.9 × 10−2 cm/W up to −3.0 × 10−2 cm/W. Linearity of the P-scan method in the context of nanocomposite saturable absorption is also discussed.  相似文献   

4.
Anatase phase TiO2 films have been grown on fused silica substrate by pulsed laser deposition technique at substrate temperature of 750 °C under the oxygen pressure of 5 Pa. From the transmission spectra, the optical band gap and linear refractive index of the TiO2 films were determined. The third-order optical nonlinearities of the films were measured by Z-scan method using a femtosecond laser (50 fs) at the wavelength of 800 nm. The real and imaginary parts of third-order nonlinear susceptibility χ(3) were determined to be −7.1 × 10−11esu and −4.42 × 10−12esu, respectively. The figure of merit, T, defined by T=βλ/n2, was calculated to be 0.8, which meets the requirement of all-optical switching devices. The results show that the anatase TiO2 films have great potential applications for nonlinear optical devices.  相似文献   

5.
Well-crystallized 250 nm-thick SrTiO3 thin films on fused-quartz substrate were prepared by pulsed laser deposition. The band-gap of SrTiO3 thin film by transmittance spectra is equal to 3.50 eV, larger than 3.22 eV for the bulk crystal. The nonlinear optical properties of the films were examined with picosecond pulses at 1.064 μm excitation. A large two-photon absorption (TPA) with absorption coefficient of 87.7 cm/GW was obtained, larger than 51.7 cm/GW for BaTiO3 thin films. The nonlinear refractive index n2 is equal to 5.7×10−10 esu with a negative sign, larger than 0.267×10−11 esu for bulk SrTiO3. The large TPA is attributed to intermediate energy levels introduced by the grain boundaries, and the optical limiting behaviors stemming from both TPA and negative nonlinear refraction were also discussed.  相似文献   

6.
An organo-metallic complex, [(CH3)4N][Ni(dmit)2] (dmit2− = (1,3-dithiole-2-thione-4,5-dithiolate), abbreviated as MeNi, is synthesized. The nonlinear optical absorption properties of MeNi dissolved in acetone have been studied using the open-aperture Z-scan technique with 40 ps pulse width at 1064 nm and 1 ns, 15 ns pulse width at 1053 nm, respectively. Strong saturable absorption has been found when the sample solution is irradiated by 40 ps and 1 ns laser pulses. While irradiated with 15 ns laser pulse, a stronger reverse saturable absorption has been found. The nonlinear optical absorption coefficients are −1.03 × 10−11 m/W, −1.85 × 10−11 m/W and 3.84 × 10−10 m/W, respectively. The mechanism responsible for the difference between the results is analyzed. All the results suggest that this material may be a promising candidate for the application to laser pulse compression in the near-infrared waveband.  相似文献   

7.
Oxygen ions with energies of 6.0 or 3.0 MeV were implanted into y-cut Yb:YCOB crystals at fluences ranging from 5.0 × 1013 to 2.0 × 1015 ions/cm2 at room temperature, forming optical planar waveguide structures. Dark-mode line spectroscopy was applied at two wavelengths, 633 and 1539 nm, in various excitation configurations, showing strong enhancement of one of the indices (nx) in the implanted near surface. The nx refractive index profile is reconstructed by a reflectivity calculation method and compared to the ion energy losses profiles deduced from SRIM-code simulation. Moreover, the near-field patterns were imaged by an end-fire coupling arrangement.  相似文献   

8.
The third order nonlinear optical properties of acid blue 29 solutions have been studied using Z-scan technique. Experiments are performed using a CW He–Ne laser at 632.8 nm wavelength and 3 mW power. The linear absorption coefficient α0, nonlinear absorption coefficient β, nonlinear refractive index n2, Re χ3, and Im χ3 are measured at three different concentrations. Our results show that higher concentration gives better nonlinear optical properties. Also, it was found that there is an increasing trend in the value of the nonlinear refractive index n2 as the concentration increases.  相似文献   

9.
Metal nanocluster composite glass prepared by 180 keV Cu ions into silica with dose of 1 × 1017 ions/cm2 has been studied. The microstructural properties of the nanoclusters were analysed by optical absorption spectra and transmission electron microscopy (TEM). Third-order nonlinear optical properties of the nanoclusters were measured at 1064 nm and 532 nm excitations using Z-scan technique. The nonlinear refraction index, nonlinear absorption coefficient, and the real and imaginary parts of the third-order nonlinear susceptibility were deduced. The mechanisms responsible for the nonlinear response were discussed. Absolute third-order nonlinear susceptibility χ(3) of this kind of sample was determined to be 2.1 × 10−7 esu at 532 nm and 1.2 × 10−7 esu at 1064 nm, respectively.  相似文献   

10.
(Ba0.7Sr0.3)TiO3 (BST) ferroelectric thin films with perovskite crystal structure were fabricated by soft solution processing on a quartz substrate. The third-order nonlinear optical properties were investigated by using Z-scan technique. Positive nonlinear refractive index and nonlinear absorption coefficient were determined to be 4×10−7 esu and 1.2×10−6 m/w, respectively. The real part and imaginary part of third-order optical nonlinear susceptibility were calculated and the values were 6.43×10−8 and 5.14×10−8 esu, respectively. All of these results show ferroelectric BST thin film is promising for applications in nonlinear optical devices.  相似文献   

11.
The laser ablation of Ge and GaAs targets placed in water and ethanol was carried out using the fundamental radiation of nanosecond Nd:YLF laser. The results of preparation and the optical and nonlinear optical characterization of the Ge and GaAs nanoparticle suspensions are presented. The considerable shift of the band gap energy of the nanoparticles compared to the bulk semiconductors was observed. The distribution of nanoparticle sizes was estimated in the range of 1.5-10 nm on the basis of the TEM and spectral measurements. The nonlinear refractive indices and nonlinear absorption coefficients of Ge and GaAs nanoparticles were defined by the z-scan technique using second harmonic radiation of picosecond Nd:YAG laser (λ = 532 nm).  相似文献   

12.
In advanced optical fiber communication systems where reflection light might cause degradation of the signal quality, optical waveguide isolators play an important role. The effect of a metal layer with negative permittivity on the behavior of nonlinear-magnetooptic isolator is studied. The isolator consists of metal film, nonlinear cladding, and magnetooptic substrate. It is found that difference between forward and backward propagation for TM0 mode increases with increasing the absolute value of the tuning parameter which is the permittivity of the metal film, ?f. It is also found that the maximum cut-off thickness of the isolator occurs in self-defocusing case around η = 0.65 and at the highest assumed value of ?f = −8. These results are helpful in fabricating an isolator with high performance.  相似文献   

13.
This study investigates the nonlinear optical properties of azo-dye-doped nematic and polymer-dispersed liquid crystal (ADDPDLC) films with nano-sized LC droplets using the Z-scan technique, which is a simple but powerful technique for measuring the optical Kerr constants of materials. The results indicate that the optical Kerr constant (n2) of the azo-dye-doped nematic LC (ADDLC) film is large because of the photoisomerization effect and the thermal effect. Therefore, the optical Kerr constant of this material can be modulated by varying the temperature of the sample and the direction of polarization of incident laser. The range of n2 modulated is from −5.26 × 10−3 to 1.62 × 10−3 cm2/W. The optical Kerr constants of ADDPDLC films at various temperatures are also measured. The experimental results reveal that liquid crystals in the ADDPDLC film strengthen the nonlinearity. The n2 of the ADDPDLC film is maximal at ∼35 °C, because of the decrease in the clearing temperature of the ADDPDLC films. The clearing temperatures of the liquid crystals (E7), and the ADDPDLC film used in this work were found to be 61 °C and 43 °C, respectively.  相似文献   

14.
We report, for the first time, an efficient intra-cavity second-harmonic generation (SHG) at 1084 nm in a nonlinear optical crystal, BiB3O6(BIBO) at the direction of (θ?) = (170.1°, 90°), performed with a LD end-pumped cw Nd:YVO4 laser. With 590 mW diode pump power, a continuous-wave (cw) SHG output power of 19 mW at 542 nm yellow-green color has been obtained using a 1.5 mm-thick BIBO crystal. The optical conversion efficiency was 3.22%. It was found that the output wavelength could be 532 nm, 537 nm or 542 nm according to regulating the angle of BIBO.  相似文献   

15.
The features of degenerate multi-wave mixing in resonant media (dye solutions) have been studied theoretically and experimentally. It has been demonstrated that thermal nonlinearity due to the induced absorption from the excited level contributes significantly to the efficiency of four-wave mixing, but results in lower efficiency of higher-order interactions. The measurement results obtained for the energy efficiency of four-, six- and eight-wave mixing enable calculations of the third-, fifth- and seventh-order nonlinear optical susceptibilities, respectively. Experimentally, the method proposed for measurements of the higher-order nonlinearities has been realized with the use of the multi-wave mixing at second harmonic λ = 532 nm of monopulse YAG:Nd3+ laser radiation in a Rhodamine 6G dye solution. The ratios ∣χ(5)∣/∣χ(3)∣ and ∣χ(7)∣/∣χ(5)∣ are determined to be of the order of 10−5 cm3/erg.  相似文献   

16.
Nonlinear coefficient and group-velocity-dispersion of bismuth-based nonlinear fibers were determined by four-wave-mixing measurements. The wavelength dependence of refractive index of bulk bismuth-based glasses was also measured to estimate the material dispersion and waveguide dispersion. A newly developed bi-directional four-wave-mixing configuration enabled us to determine all fiber parameters simultaneously. The obtained fiber nonlinearity γ ∼ 1000 W−1 km−1 of bismuth-based nonlinear fiber is the highest one in the step-index fiber made of oxide glasses as expected from a high refractive index at 1550 nm. Dispersion analysis reveals that the both material dispersion and waveguide dispersion affect to the large group-velocity-dispersion of bismuth-based nonlinear fiber.  相似文献   

17.
We reported an actively Q-switched, intracavity Nd3+:YVO4 self-Raman laser at 1176 nm with low threshold and high efficiency. From the extracavity frequency doubling by use of LBO nonlinear crystal, over 3.5 mW, 588 nm yellow laser is achieved. The maximum Raman laser output at is 182 mW with 1.8 W incident pump power. The threshold is only 370 mW at a pulse repetition frequency of 5 kHz. The optical conversion efficiency from incident to the Raman laser is 10%, and 1.9% from Raman laser to the yellow.  相似文献   

18.
Using the hydrodynamic model of a semiconductor plasma, the influence of carrier heating on the parametric dispersion and amplification has been analytically investigated in a doped III-V semiconductor, viz. n-InSb. The origin of the phenomena lies in the effective second-order optical susceptibility (χe(2)) arising due to the induced nonlinear current density of the medium. Using the coupled-mode theory, the threshold value of pump electric field (|E0T|para) and parametric gain coefficient (αpara) are obtained via χe(2). The relevant experiment has not been performed. Proper selection of the doping level not only lowers |E0T|para required for the onset of parametric excitation but also enhances αpara. The carrier heating induced by the intense pump modifies the electron collision frequency and hence the nonlinearity of the medium, which in turn further lowers |E0T|para and enhances αpara by a factor of ∼103 and ∼2×102, respectively. The results strongly suggest that the incorporation of carrier heating by the pump in the analysis leads to a better understanding of parametric processes in solids and gaseous plasmas, which can be of great use in the generation of squeezed states.  相似文献   

19.
Single crystals of organic nonlinear optical (NLO) materials l-Histidine nitrate (C6H10N3O2)+ · (NO3) and l-Cysteine tartrate monohydrate (C3H8NO2S)+ · (C4H5O6) · H2O were grown by submerged seed solution method. Characterization of the crystals was made using single crystal X-ray diffraction. Fourier transform infrared (FTIR) spectroscopic studies, optical behaviour such as UV-visible-NIR absorption spectra and second harmonic generation (SHG) conversion efficiency were investigated to explore the NLO characteristics of the above materials. Microhardness measurements and dielectric studies of the compounds were also carried out.  相似文献   

20.
We present the studies of nonlinear refraction and nonlinear absorption in promising crystals which are extensively used in Raman lasers or as solid-state laser host materials: Ba(NO3)2, KGW, KYW, and KYbW. The single-beam z-scan technique with 1 ps laser pulses at 790 and 395 nm has been applied for the study. Nonlinear refraction-index intensity-coefficients and two-photon absorption coefficients have been determined for the crystals. The considerable enhancement of nonlinear refraction is observed in the crystals at 395 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号