首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
石墨烯/橡胶纳米复合材料研究进展   总被引:1,自引:0,他引:1  
石墨烯结合了碳纳米管导电和黏土片层的结构特征,为发展高性能、多功能聚合物纳米复合材料提供了新的方向.石墨烯/橡胶纳米复合材料近年来引起广泛关注.众多研究结果表明石墨烯是橡胶的理想填料之一,为高性能橡胶改性提供了新途径.本文介绍了石墨烯/橡胶纳米复合材料的3种主要制备方法,即乳液共混法、溶液共混法和机械混炼法,以及材料的物理机械性能、电学性能、气体阻隔性能和热学性能,并分析了该类材料的发展前景和存在问题.  相似文献   

2.
通过原位自组装法制备MWCNTs/PVA-co-PE复合材料,将此复合材料与纤维素酯共混后,利用热塑性聚合物熔融共混相分离法制备了MWCNTs/PVA-co-PE复合纳米纤维。通过SEM和TEM分析表征了MWCNTs/PVA-co-PE复合纳米纤维的形态、结构以及多壁碳纳米管在纳米纤维中的分布状态;研究了多壁碳纳米管添加量对MWCNTs/PVA-co-PE复合纳米纤维导电性能的影响。结果表明,当多壁碳纳米管的添加量大于6%时,MWCNTs/PVA-co-PE复合材料的表面电阻会显著下降;提高MWCNTs的添加量会使MWCNTs/PVA-co-PE复合纳米纤维的表面电阻稍微下降,但是效果不大,这可能是由于MWCNTs在纳米纤维内部不能形成良好的导电通道。  相似文献   

3.
采用正电子湮没寿命谱技术研究了尼龙6/碳纳米管纳米复合材料的自由体积特性。实验结果发现碳纳米管对纳米复合材料的自由体积孔洞尺寸影响甚微,而自由体积孔洞数目和相对自由体积分数均随碳纳米管含量的增加而明显减小。导致这种减小的原因可能来自两方面,其一是由于碳纳米管和基质聚合物间的相互作用限制了高分子链段运动;其二是碳纳米管填充增强了尼龙6基体结晶性能。此外,力学性能研究表明,碳纳米管在复合材料中较均匀的分散和较好的界面接触可以提高材料的力学强度,而自由体积分数的减小则使材料的韧性变差。  相似文献   

4.
碳纳米管以其窄孔径分布、高有效比表面积、良好导电性能、良好力学性能、优良化学稳定性和良好热稳定性以及较低成本等优点,被认为是超级电容器的理想电极材料之一.本文结合碳材料具有的双电层电容和金属氧化物、导电聚合物具有的准法拉第电容,综述了碳纳米管的修饰处理技术及碳纳米管/金属氧化物、碳纳米管/导电聚合物复合材料、碳纳米管原位再生长技术的研究进展,指出碳纳米管的修饰能更好地改善其电化学性质,因此碳纳米管复合材料是超级电容器电极材料研究的一个重要发展方向.  相似文献   

5.
当今,柔性可穿戴电子设备、航空航天等领域的快速发展对柔性、轻质电磁干扰(electromagnetic interference,EMI)屏蔽材料的需求不断增加,碳纳米管/聚合物基复合材料因具有柔性好、质量轻、导电性和机械稳定性优异、EMI屏蔽效能可调等优点而备受关注。本文介绍了电磁屏蔽机理,对碳纳米管的分散方法和碳纳米管/聚合物基柔性EMI屏蔽复合材料的制备方法进行了对比总结,综述了碳纳米管/聚合物基柔性EMI屏蔽复合材料的研究进展。最后,提出了碳纳米管/聚合物基柔性EMI屏蔽复合材料亟待解决的关键科学问题,并对其未来发展趋势进行了展望。  相似文献   

6.
碳纳米管/聚合物复合材料   总被引:10,自引:0,他引:10  
张娟玲  崔屾 《化学进展》2006,18(10):1313-1321
本文简要介绍了碳纳米管的纯化和表面改性方法,着重对碳纳米管/聚合物复合材料的制备方法、微观结构表征及其力学、电学、光学等性能的研究进行了综述;简述了此类复合材料在电学、电磁屏蔽材料及吸波隐身材料、纤维材料以及航天工业等领域的应用,探讨了该研究领域所面临的一些问题及今后的发展方向。  相似文献   

7.
高娜 《分析试验室》2011,30(6):94-97
在碳纳米管存在下合成了直径2~10nm的钯纳米粒子,利用全氟磺酸盐聚合物Nafion溶解碳纳米管/钯纳米粒子复合物,构建了检测H2O2的电化学传感平台.循环伏安法证实所合成的钯纳米粒子在复合材料中保持了其电化学活性,该纳米复合物对H2O2具有催化能力.将葡萄糖氧化酶固定在碳纳米管/钯纳米粒子复合物修饰的玻碳电极上,制备...  相似文献   

8.
碳纳米管-聚合物复合材料的研究进展   总被引:7,自引:0,他引:7  
本文综述了两类碳纳米管-聚合物复合材料的制备方法,碳纳米管/复合材料的力学、光、电化学等性质,以及当前研究的焦点和存在的问题,侧重讨论碳纳米管与聚合物相互作用的机理,并展望两类复合材料的应用前景。  相似文献   

9.
纳米颗粒在聚合物复合材料中的阻燃机理及其应用   总被引:1,自引:0,他引:1  
以粘土/固体环氧树脂体系为模型研究纳米颗粒在燃烧聚合物中的迁移行为,探讨其阻燃机理。发现纳米颗粒能够在熔融的聚合物中迁移,并在燃烧的聚合物表面富集,形成阻隔层。通过影响外界热量供给,减缓内部聚合物热解速率,同时在一定程度上阻隔聚合物裂解可燃成分的外溢,从而实现有效阻燃的目的。基于上述结论,在热固性树脂基复合材料表面预先植入碳纳米管、碳纳米纤维、粘土等纳米材料阻隔层,制备了阻燃型热固性树脂基复合材料。  相似文献   

10.
碳纳米管高分子化是发展高性能的聚合物基纳米功能材料的重要研究方向,本文从"grafting-to"和"grafting-from"两种方式对聚合物接枝碳纳米管的最新进展进行了系统综述。"Grafting-to"方法主要包括羧基衍生反应(酰化、酯化)、加成反应(大分子自由基加成、叠氮环加成)和硫醇偶联反应。"Grafting-from"方法包括普通自由基聚合、可控/活性自由基聚合、离子聚合、开环聚合和逐步聚合反应,其中碳纳米管表面引发活性自由基聚合进一步分为原子转移自由基聚合、氮氧稳定自由基聚合和可逆加成-断链转移聚合。此外,本文还简述了碳纳米管自身的聚合反应,并探讨了目前聚合物修饰碳纳米管所面临的问题和今后的发展方向。  相似文献   

11.
It is well known that carbon nanotubes (CNTs) have excellent electrical properties and can be used as the nanofiller in natural polymers to produce conductive CNT/polymer nanocomposites. In this study, the conductive behavior of CNT-reinforced natural polymer nanocomposites was investigated. The effect of CNT concentration on the conductivity of CNT/natural polymer nanocomposites was also investigated. The natural polymers used were plasticized starch (PS) and chitosan (CS). FTIR spectroscopy was used to examine the interactions between PS, CS, and CNTs. TEM analysis on both nanocomposites were made to study the dispersion states of CNTs in both polymers. The results showed that the surface resistivities of both CNT/PS and CNT/CS nanocomposites decreased steeply with increasing CNT concentration. Particularly, the CNT/CS nanocomposites showed a better conductivity than the CNT/PS composites at the same CNT concentration. The TEM result showed that CNT/CS nanocomposites had better dispersibility and formation of fully connected, three-dimensional network structures between the CNTs than the CNT/PS nanocomposites, which results in the superior conductive property of CNT/CS nanocomposites compared to the CNT/PS nanocomposites.  相似文献   

12.
Polymer nanocomposites based on a very small quantity of carbon nanotube (CNT) and thermotropic liquid crystal polymer (TLCP) were prepared by simple melt blending using a twin-screw extruder. Morphological observations revealed that modified CNT was uniformly dispersed in the TLCP matrix and increased interfacial adhesion between the nanotubes and the polymer matrix. The enhancement of the storage and loss moduli of the TLCP nanocomposites with the introduction of CNT was more pronounced at low frequency region, and non-terminal behavior observed in the TLCP nanocomposites resulted from the nanotube-nanotube and polymer-nanotubes interactions. There is significant dependence of the mechanical, rheological, and thermal properties of the TLCP nanocomposites on the uniform dispersion of CNT and the interfacial adhesion between CNT and TLCP matrix, and their synergistic effect was more effective at low CNT content than at high CNT content. The key to improve the overall properties of the TLCP nanocomposites depends on the optimization of the unique geometry and dispersion state of CNT and the interfacial interactions in the TLCP nanocomposites during melt processing. This study demonstrate that a very small quantity of CNT substantially improved thermal stability and mechanical properties of the TLCP nanocomposites, providing a design guide of CNT-filled TLCP composites with as great potential for industrial use.  相似文献   

13.
Multi-walled carbon nanotube (MWCNT) reinforced polylactide (PLA) nanocomposites were injected molded into a mold with micro needle patterns. In order to alleviate the hesitation effect caused by an increased melt viscositgy of PLA/CNT nanocomposites, the effects of the injection speed and holding pressure on the replication property were investigated. The effects of MWCNTs on the crystallization, thermal behavior, replication properties, replication and surface properties of micro injection molded PLA/CNT nanocomposites were investigated. An analysis of crystallinity and thermal behavior indicated that the MWCNTs promoted the unique α’ to α crystal transition of PLA, leading to an enhancement of surface modulus and hardness, as measured using a nanoindentation technique. The specific interaction between PLA and MWCNTs was characterized using an equilibrium melting point depression technique. Furthermore, the MWCNTs increased the activation energy for thermal degradation of PLA due to the physical barrier effect. The improved replication quality of the microfeatures in the PLA/MWCNT nanocomposites has been achieved by elevating injection speed and holding pressure, which enhances the polymer filling ability within the micro cavity. A replication ratio greater than 96% for the micro injection molded PLA/CNT nanocomposites were achieved at holding pressure of 100 MPa and injection speed of 120 mm/s. This study shows that processing conditions significantly influence the replication and surface properties of micro injection molded PLA/CNT nanocomposites.  相似文献   

14.
Polymer blend nanocomposites based on thermoplastic polyurethane (PU) elastomer, polylactide (PLA) and surface modified carbon nanotubes were prepared via simple melt mixing process and investigated for its mechanical, dynamic mechanical and electroactive shape memory properties. Chemical and structural characterization of the polymer blend nanocomposites were investigated by Fourier Transform infrared (FT-IR) and wide angle X-ray diffraction (WAXD). Loading of the surface modified carbon nanotube in the PU/PLA polymer blends resulted in the significant improvement on the mechanical properties such as tensile strength, when compared to the pure and pristine CNT loaded polymer blends. Dynamic mechanical analysis showed that the glass transition temperature (Tg) of the PU/PLA blend slightly increases on loading of pristine CNT and this effect is more pronounced on loading surface modified CNTs. Thermal and electrical properties of the polymer blend composites increases significantly on loading pristine or surface modified CNTs. Finally, shape memory studies of the PU/PLA/modified CNT composites exhibit a remarkable recoverability of its shape at lower applied dc voltages, when compared to pure or pristine CNT loaded system.  相似文献   

15.
Fast and efficient determination of the optimal mechanical property of a polymer/CNT nanocomposite is crucial to develop polymer conductive nanocomposites. This work establishes a rheological approach to evaluate the super-toughness point of compatibilized high density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites. Results illustrate that three types of HDPE/MWCNT nanocomposites exhibit obvious gel plateaus in the dynamic rheological curves and the gel points of nanocomposites with compatibilizer shift to the low MWCNTs loading. The super-toughness points of HDPE/MWCNT nanocomposites with compatibilizers show the correspondence with the gel points acquired from the rheological data, indicating that dynamic rheology is an effective way to determine the super-toughness points of HDPE/MWCNT nanocomposites with compatibilizers. Furthermore, unique network structure at the gel points is directly observed and the new mechanism of toughness is proposed. This study provides new insights for effective control of the structures and properties of polymer/CNT nanocomposites.  相似文献   

16.
Self-assembled graphene/carbon nanotube (CNT)/polystyrene hybrid nanocomposites were prepared by water-based in situ microemulsion polymerization. The resulting nanocomposites were used as filler in a host polystyrene matrix to form composite films. An admixture of the two types of carbon fillers provided better improvement in the thermal and mechanical properties compared to the neat polymer. The sheet resistance decreased progressively due to the formation of an extended conjugation network with the CNT bridging the gap between the graphene sheets coated with polymer nanoparticles. The details of the analysis are presented.  相似文献   

17.
Carbon nanotubes (CNTs) have been attracting increasing interest for the fabrication of polymer‐based nanocomposites because of their excellent properties. Traditional methods for the preparation of polymer/CNTs nanocomposites are in situ polymerization, solution blending, and melt mixing. The achievement of a good CNT dispersion and a percolation network is important in order to obtain better mechanical and electrical properties. However, the rheological behavior of polymer/CNTs systems, in particular regarding the extensional flow, has not been much investigated so far. In this work we present, for the first time, rheological data in non‐isothermal extensional flow and an investigation on the effect of the extensional flow upon the final properties of several polymer/CNTs systems was carried out as well. Extensional flow led to higher mechanical properties and higher melt strength, but only a slightly reduced breaking stretching ratio. This result could be particularly interesting in the view of potential industrial applications such as film blowing and spinning. Morphological analyses also showed higher degrees of dispersion and variation in the CNTs final dimensions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The typical nano-carbon materials, 1D fiber-like carbon nanotubes (CNTs) and 2D platelet-like graphene nanosheets (GRNs), that have attracted tremendous attention in the field of polymer nanocomposites due to their unprecedented properties, are used as conducting filler to induce a considerable improvement in the mechanical, thermal and electrical properties of the resulting graphene/polymer nanocomposites at very low loading contents. This study deals with the preparation and electro-stimulus response properties of polyurethane (PU) dielectric elastomer films with such 1D and 2D nanocarbon fillers embedded in the polymer matrix. The various forms of carbon used in composite preparation include CNT, GRN and CNT-GRN hybrid fillers. Results indicate that the dielectric, mechanical and electromechanical properties depend on the carbon filler type and the carbon filler weight fraction. Here, it has been also established that embedding CNT-GRN hybrid fillers into pristine polyurethane endows somewhat better dispersion of CNTs and GRNs as well as better interfacial adhesion between the carbon fillers and matrix, which results in an improvement in electric-induced strain. Therefore, the nanocomposites seem to be very attractive for microelectromechanical systems applications.  相似文献   

19.
Magnetic polypropylene (PP) nanocomposites with different loadings (from 0.5 to 20 wt %) of carbon nanotubes with iron (CNT‐Fe) were fabricated using the melt‐mixing method. The carbon nanotubes were synthesized by pyrolysis of sawdust from the furniture industry. The morphological characterization shows homogenous dispersion of the filler in the polymer matrix. The addition of only 0.5 wt % CNT‐Fe already results in ferromagnetic behavior in the diamagnetic polymer matrix. The thermal properties were investigated using thermogravimetric analysis and differential scanning calorimetry. The results show an increase in the maximum degradation, crystallization, and melting temperatures of the nanocomposites compared with neat PP. The nanocomposites showed improvement in terms of mechanical and oxygen permeability properties. A very significant result of the work is the high remnant magnetization and coercivity values of the nanocomposites at room temperature whereas most of the works on similar systems show magnetic properties only at very low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号