首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
固相微萃取萃取头制备技术及试验方法的进展   总被引:15,自引:0,他引:15  
徐溢  付钰洁 《色谱》2004,22(5):528-534
在阐述固相微萃取的平衡理论及非平衡理论基础上,重点探讨了萃取头的制备技术和相关试验方法的进展。除了介绍商品化通用萃取头的制备技术外,还论述了溶胶-凝胶法、电沉积法、碳素基体吸附法、高温环氧树脂固定法等新的制备技术;探讨了固相微萃取试验方法中萃取模式和萃取头的选择、萃取条件优化以及方法的灵敏度、精度、自动化等的评价;进一步总结了固相微萃取的应用现状,对固相微萃取的发展方向作了展望。  相似文献   

2.
A new cloud vapor zone (CVZ)-based headspace solid-phase microextraction (HS-SPME) technique has been demonstrated with the capability of heating the sample matrix and simultaneously cooling the sampling zone. A bi-temperature-controlled (BTC) system, allowing 10 mL of test sample heating and headspace external-cooling, was employed for the CVZ formation around the SPME-fiber sampling area. In the CVZ procedure, the heated headspace vapor undergoes a sudden cooling near the SPME to form a dense cloud of analyte–water vapor, which is helpful for adsorption or absorption of the analyte. The device was evaluated for the quantitative analysis of aqueous chlorothalonil. Parameters influencing sampling efficiency, e.g., SPME fiber coating, SPME sampling temperature and time, solution modifier, addition of salt, sample pH, and temperature, were investigated and optimized thoroughly. The proposed BTC-HS-SPME method afforded a best extraction efficiency of above 94% accuracy (less than 4.1% RSD, n = 7) by using the PDMS fiber to collect chlorothalonil in the headspace at 5 °C under the optimized condition, i.e., heating sample solution (added as 10% ethylene glycol and 30% NaCl, at pH 7.0) at 130 °C for 15 min. The detection was linear from 0.01 to 80 μg L−1 with a regression coefficient of 0.9998 and had a detection limit of 3.0 ng L−1 based on S/N = 3. Practical application was demonstrated by analyzing chlorothalonil in farm water samples with promising results and recoveries. The approach provided a very simple, fast, sensitive, and solvent-free procedure to collect analytes from aqueous solution. The approach can provide a new platform for other sensitive HS-SPME assays.  相似文献   

3.
Headspace solid phase microextraction (headspace SPME) has been demonstrated to be an excellent solvent-free sampling method. One of the major factors contributing to the success of headspace SPME is the concentrating effect of the fiber coating toward organic compounds. The affinity of the fiber coating toward very volatile analytes, such as chloromethane, may, however, not be large enough for detection at the parts per trillion concentration level. Static headspace analysis, on the other hand, is very effective for these very volatile compounds. As analyte volatility decreases, the sensitivity of static headspace analysis drops. The complementary nature of these two sampling methods can be exploited by combining the SPME device with a gastight syringe. The sensitivity of the new sampling device is better than that of SPME for very volatile compounds or that of static headspace analysis for less volatile compounds. This new method can sample a wide range of compounds from chloromethane (b.p. −24°C) to bromoform (b.p. 149°C) with estimated limits of detection at the low parts per trillion level.  相似文献   

4.
Most headspace solid-phase microextraction (HS-SPME) volatile analysis methods have been developed for aqueous samples and have been either adapted or applied to complex matrices. This study examines sample/headspace equilibrium based on realistic (non-spiked) concentration levels in real complex sample matrices (grapes and wine) with a systematic multivariate statistical approach. The presence and absence of matrix effects are explained through exponential and linear relationships, respectively. The potential of over- and underestimating volatile compounds in a diluted sample is illustrated and the common dilution equation (C1V1=C2V2) is shown to not always apply to headspace volatile analysis. Additionally, sample dilution was shown to be more sensitive to matrix effects than sample/headspace volume variations with the latter showing analyte dependency. An optimum sample size of 6.9-8.6g in a 20mL vial without dilution was observed. This study shows that sensitivity and limit of detection (LOD) can be improved to a limit with a subsequent loss - an extension to existing theory. The study further illustrates that in trying to bring an analyte within linear range through sample dilution, sensitivity and LOD can be lost with a probable shift in optimum ranges and sample/headspace equilibrium.  相似文献   

5.
Solid-phase microextraction (SPME) is a fast, solvent-free alternative to conventional sample preparation techniques. This technique involves exposing a fused silica fiber that has been coated with a stationary phase to an aqueous solution or its headspace to selectively extract compounds from their matrix. The fiber is then removed, and the analytes are thermally desorbed in the injector of a gas chromatograph. By sampling from the headspace above sample matrices, SPME can be used to extract target analytes from very complex matrices. In this study, SPME in the headspace is used in developing a method for the dye 1-methylaminoanthraquinone (MAAQ) and two lachrymators: orthochlorobenzalmalononitrile (CS) (tear gas) and 2-chloroacetophenone (CN) (tear gas). The focus is to develop a robust method to minimize sample preparation and to reduce matrix interferences encountered by other extraction techniques. In developing the method, several fibers are studied for their affinity for the compounds of interest. Although this method is developed for qualitative analysis, the extraction time and temperature profile are thoroughly investigated to provide the optimal conditions. The use of a salt solution is evaluated to increase the partitioning of MAAQ into the headspace. Using this method, qualitative extraction is achieved for the analysis of CN, CS, and MAAQ from its matrices. CN and CS are extracted in less than 5 min, though MAAQ needed more than 15 min to achieve a reasonable response. If more sensitivity is required, the use of a salt solution increases the response of MAAQ by 90-fold.  相似文献   

6.
Applications of solid phase microextraction (SPME) for trace element speciation are reviewed. Because of the relative novelty of the technique in the inorganic analytical field, the first part of this review provides a short overview of the principles of SPME operation; the second part describes typical SPME applications to elemental speciation. Volatile organometallic compounds can be collected by SPME from the sample headspace or liquid phase, directly or after derivatization. The usual separation method for the collected volatile species is gas chromatography. Non-volatile analyte species can be collected from the sample liquid phase and separated by liquid chromatography or capillary electrophoresis. Currently, most SPME applications in the inorganic field comprise analyte ethylation and headspace extraction followed by gas chromatographic separation of tin, lead and mercury species. The use of SPME for the study of equilibria in complex systems is also discussed and future roles of solid phase microextraction in the inorganic analytical field are raised.  相似文献   

7.
Aqueous-phase alkylation followed by, headspace solid-phase microextraction (SPME) for mercury speciation in biota, was developed a decade ago. Despite this, matrix effects in this technique have not yet been addressed. In this paper, the importance of these effects has been assessed and overcome by standard addition calibration. Furthermore, improvements were made in the extraction of methylmercury (MeHg) from biological matrixes by optimizing the matrix digestion procedure (temperature and digestion time) and the SPME parameters (aliquot volume of digested samples, extraction temperature and fibre coating), which aimed to minimize the matrix effects. Accordingly, samples were alkaline digested (KOH, 25%, w/v, 60 degrees C, 180 min) and an aliquot was propylated using an aqueous NaBPr(4) solution, headspace SPME sampling and, finally, by using GC-pyrolysis (Py)-atomic fluorescence spectrometry (AFS) determination. The procedure developed was validated using dogfish muscle reference material NRCC DORM-2.  相似文献   

8.
Solid-phase microextraction (SPME) is a miniaturized and solvent-free sample preparation technique for chromatographic–spectrometric analysis by which the analytes are extracted from a gaseous or liquid sample by absorption in, or adsorption on, a thin polymer coating fixed to the solid surface of a fiber, inside an injection needle or inside a capillary. In this paper, the present state of practical performance and of applications of SPME to the analysis of blood, urine, oral fluid and hair in clinical and forensic toxicology is reviewed. The commercial coatings for fibers or needles have not essentially changed for many years, but there are interesting laboratory developments, such as conductive polypyrrole coatings for electrochemically controlled SPME of anions or cations and coatings with restricted-access properties for direct extraction from whole blood or immunoaffinity SPME. In-tube SPME uses segments of commercial gas chromatography (GC) capillaries for highly efficient extraction by repeated aspiration–ejection cycles of the liquid sample. It can be easily automated in combination with liquid chromatography but, as it is very sensitive to capillary plugging, it requires completely homogeneous liquid samples. In contrast, fiber-based SPME has not yet been performed automatically in combination with high-performance liquid chromatography. The headspace extractions on fibers or needles (solid-phase dynamic extraction) combined with GC methods are the most advantageous versions of SPME because of very pure extracts and the availability of automatic samplers. Surprisingly, substances with quite high boiling points, such as tricyclic antidepressants or phenothiazines, can be measured by headspace SPME from aqueous samples. The applicability and sensitivity of SPME was essentially extended by in-sample or on-fiber derivatization. The different modes of SPME were applied to analysis of solvents and inhalation narcotics, amphetamines, cocaine and metabolites, cannabinoids, methadone and other opioids, fatty acid ethyl esters as alcohol markers, γ-hydroxybutyric acid, benzodiazepines, various other therapeutic drugs, pesticides, chemical warfare agents, cyanide, sulfide and metal ions. In general, SPME is routinely used in optimized methods for specific analytes. However, it was shown that it also has some capacity for a general screening by direct immersion into urine samples and for pesticides and other semivolatile substance in the headspace mode.  相似文献   

9.
A method was developed for the analysis of volatile polar compounds in a water matrix using open cap vials Solid Phase Micro-Extraction (SPME) and Capillary Gas Chromatography (CGC). Both SPME techniques – direct sampling and headspace – were tested. Optimization of experimental conditions – exposure time, desorption time, with headspace SPME in addition the influence of the temperature and ionic strength of the sample solution on compound sorption, and finally GC response – were investigated. The analytes were extracted by directly immersing the 85 μm polyacrylate fiber in the aqueous sample or in the headspace. The linear range of the preconcentration process and the precision were examined. The amount of polar analytes sorbed on the fiber was determined and was found to be concentration dependent; it amounted to 0.014–0.64% in the concentration range of 0.00425–425 ppm studied in aqueous solution for direct sampling SPME and to 0.011–2.76% for solutions of concentration 0.0425–255 ppm for headspace SPME. The limits of determination were ascertained. Headspace SPME was applied to the analysis of real-life samples.  相似文献   

10.
A new sampling method is proposed for solid-phase microextraction (SPME), in which the extraction is carried out in a glass capillary containing a few microliters of sample. When an adsorption-type fiber is used for SPME, the equilibrium between aqueous sample and coating can be described by a Langmuir isotherm. Since the total amount of analytes and coexisting substances stays at a low level in a small volume of sample, the linear concentration range of analytes will be extended for SPME to be applied in quantification and the interference caused by sample matrix will be reduced. In addition, sampling in a capillary has a short diffusion distance and extraction equilibrium is established in 5-10 min. It is important in clinical analysis and therapeutic drug monitoring to be able to analyse sample volumes of samples. The feasibility of the new sampling method is demonstrated by the extractions of p-hydroxybenzaldehyde and a synthetic solution containing 1-naphthol, paeonol and 1-naphthylamine.  相似文献   

11.
A novel geometry configuration based on sorbent-coated glass microfibers packed within a glass capillary is used to sample volatile organic compounds, dynamically, in the headspace of an open system or in a partially open system to achieve quantitative extraction of the available volatiles of explosives with negligible breakthrough. Air is sampled through the newly developed sorbent-packed 2 cm long, 2 mm diameter capillary microextraction of volatiles (CMV) and subsequently introduced into a commercially available thermal desorption probe fitted directly into a GC injection port. A sorbent coating surface area of ~5?×?10?2 m2 or 5,000 times greater than that of a single solid-phase microextraction (SPME) fiber allows for fast (30 s), flow-through sampling of relatively large volumes using sampling flow rates of ~1.5 L/min. A direct comparison of the new CMV extraction to a static (equilibrium) SPME extraction of the same headspace sample yields a 30 times improvement in sensitivity for the CMV when sampling nitroglycerine (NG), 2,4-dinitrotoluene (2,4-DNT), and diphenylamine (DPA) in a mixture containing a total mass of 500 ng of each analyte, when spiked into a liter-volume container. Calibration curves were established for all compounds studied, and the recovery was determined to be ~1 % or better after only 1 min of sampling time. Quantitative analysis is also possible using this extraction technique when the sampling temperature, flow rate, and time are kept constant between calibration curves and the sample.  相似文献   

12.
Selective π-complexation capabilities of silver(I) and copper(I) ions can be effectively facilitated in ionic liquids. To understand the effects of environmental factors that influence the π-complexation of these metal ions with analytes, techniques that employ small volumes of ionic liquid that can be readily analyzed are desired. In this study, headspace single drop microextraction coupled with HPLC is used to investigate a diverse set of environmental factors on the metal ion-mediated complexation with aromatic compounds in ionic liquid media. Silver(I) and copper(I) bis[(trifluoromethyl)sulfonyl]imide salts were both studied by dissolving them in the 1-decyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ionic liquid and employing the mixture as extraction media for aromatic compounds. Water and acetonitrile within the sample solution were observed to interfere with the complexation of silver(I) ions and aromatic compounds, while ethylene glycol and triethylene glycol did not. The temperature and extraction times were optimized to fully facilitate the π-complexation capabilities of metal ions in ionic liquid media. Partition coefficients between the sample headspace and metal ion were determined using a three-phase equilibria model. Although no discernable difference in analyte partitioning between the headspace and ionic liquid solvent was observed, analyte partition coefficients to silver(I) ion tended to be greater compared to copper(I) ion.  相似文献   

13.
Chan IO  Lam PK  Cheung RH  Lam MH  Wu RS 《The Analyst》2005,130(11):1524-1529
A SPME-HPLC-post-column fluorescent derivatization method for the direct determination of saxitoxin (STX), the most potent paralytic shellfish poisoning (PSP) toxin, in water has been developed. Commercially available SPME devices with 50 microm Carbowax templated resin (CW/TPR) coating was found to be able to pre-concentrate STX from aqueous media. A special pre-conditioning treatment of soaking the SPME coating in 0.1 M NaOH solution significantly improved the extraction efficiency. The optimal pH for the SPME process is 8.1 and the equilibration time is 40 min. The partition coefficient, K, of the distribution of STX between the SPME coating and the aqueous media was measured to be 2.99 +/- 0.04 x 10(3). Extracted toxin on the SPME stationary phase was difficult to be desorbed by the HPLC mobile phase under dynamic desorption mode. A static ion-pairing desorption technique using a desorption solvent mixture of 20 mM sodium 1-heptanesulfonate in 30% aqueous acetonitrile acidified with 50 mM sulfuric acid was developed to overcome this problem. The method detection limit and repeatability achieved by this SPME-HPLC method were 0.11 ng ml(-1) and 3.7%, respectively, with a sample volume of just 5 ml of water. This analytical method is adequate for the monitoring of the PSP toxin in fresh/drinking waters. However, serious interference was observed when this technique was applied to saline water samples. This is probably due to competition of sodium ions with the cationic STX for absorption into the SPME stationary phase.  相似文献   

14.
Solid-phase microextraction (SPME) is a simple and effective adsorption and desorption technique, which eliminates the need for solvents or complicated apparatus, for concentrating volatile or nonvolatile compounds in liquid samples or headspace. SPME is compatible with analyte separation and detection by gas chromatography and high-performance liquid chromatography, and provides linear results for wide concentrations of analytes. By controlling the polarity and thickness of the coating on the fibre, maintaining consistent sampling time, and adjusting other extraction parameters, an analyst can ensure highly consistent, quantifiable results for low concentration analytes. To date, about 400 articles on SPME have been published in different fields, including environment (water, soil, air), food, natural products, pharmaceuticals, biology, toxicology, forensics and theory. As the scope of SPME grew, new improvements were made with the appearance of new coatings that allowed an increase in the specificity of this extraction technique. The key part of the SPME fibre is of course the fibre coating. At the moment, 27 variations of fibre coating and size are available. Among the newest are a fibre assembly with a dual coating of divinylbenzene and Carboxen suspended in poly(dimethylsiloxane), and a series of 23 gauge fibres intended for specific septumless injection system. The growth of SPME is also reflected in the expanding number of the accessories that make the technology even easier to use Also available is a portable field sampler which is a self-contained unit that stores the SPME fibre after sampling and during the shipment to the laboratory. Several scientific publications show the results obtained in inter-laboratory validation studies in which SPME was applied to determine the presence of different organic compounds at ppt levels, which demonstrates the reliability of this extraction technique for quantitative analysis.  相似文献   

15.
Wang D  Wang Q  Zhang Z  Chen G 《The Analyst》2012,137(2):476-480
ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals.  相似文献   

16.
Two analytical procedures based on the generation of volatile tributyltin derivatives, their separation by headspace solid-phase microextraction (HS SPME) and subsequent determination using plasma optical emission spectrometry (OES) have been developed for the selective determination of trace tributyltin (TBT) in the presence of other butyltins and inorganic tin in sediments without the use of chromatography. A microwave-assisted leaching of tin compounds from the sediment using 25%v/v acetic acid is applied for sample pretreatment. The first method takes advantage of TBT chloride releasing from the lecheate after adding 3 M hydrochloric acid, and subsequent separation of the analyte by HS SPME using Carboxen-poly(dimethylsiloxane) (CAR/PDMS). The second method involves the use of masking agents, namely ethylenediaminetetraacetic acid (EDTA) and diphenylcarbazone (DFC), which form stable chelates with monobutyltin (MBT) and dibutyltin (DBT), respectively, followed by the ethylation of tributyltin at pH 5 using sodium tetraethylborate (NaBEt4) solution. The final concentration of NaBEt4 is 0.05%w/v. The parameters affecting the TBT derivatisation and separation by HS SPME have been optimised including the selection of SPME fibre coating (PDMS, CAR/PDMS), the amount of masking agents and NaBEt4 added, sorption time (2–40 min) and sorption temperature (25–60°C). Higher sensitivity and robustness are attained with the method involving ethylation derivatisation, leading to the limit of detection (LOD) of 3 ng L?1. The selective release of TBT is observed from aqueous solutions, where the concentrations of MBT and DBT were in 2–50-fold excess to TBT. The SPME-TD-MIP-OES methods have been validated against several certified reference materials (CRMs), including SOPH-1 marine sediment, PACS-2 marine sediment and BCR 646 freshwater sediment.  相似文献   

17.
Applications of solid-phase microextraction (SPME) in the measurement of very hydrophobic organic compounds (VHOCs) are limited, partly due to the difficulty of calibrating SPME fibers for VHOCs. This study used a static SPME strategy with a large sample volume (1.6 L) and a five-point calibration procedure to determine the distribution coefficients for a large suite of polychlorinated biphenyls (PCBs) and chlorinated pesticides between a polydimethylsiloxane (PDMS) phase (100 microm thickness) coated on a glass fiber and seawater. An extraction time of 12 days was deemed adequate for equilibrium calibration from kinetic experiments. Two groups of randomly selected fibers divided into three batches (up to nine fibers in each batch) were processed separately with two gas chromatography-mass spectrometry (GC-MS) systems. Matrix effects arising from losses of the analytes to glass container walls and stirring bars were corrected. Relative standard deviations within the same batch were generally smaller than those for the entire group. Furthermore, KfVf (Kf and Vf are the distribution coefficient of an analyte between the polymer-coated fiber and aqueous phase and the fiber volume, respectively) values determined with two GC-MS systems were statistically different. These results indicate the calibrated KfVf values were less affected by the random selection of SPME fibers than by other experimental conditions, and therefore average KfVf values may be used for the same type of commercially available SPME fibers. The relative accuracy of our calibration method was similar to that of a previous study [P. Mayer. W.H.J. Vaes, J.L.M. Hermens, Anal. Chem. 72 (2000) 459] employing different coating thickness and calibration procedure. The present study also obtained a bell-shaped relationship between log Kf and log Kow (octanol-water partition coefficient) for PCB congeners with the maximum log Kf corresponding to log Kow approximately 6.5. This bell-shaped relationship was attributed mainly to steric effects arising from the interplay between the PDMS thickness and molecular sizes of the target analytes.  相似文献   

18.
A suitable analytical procedure based on static headspace solid-phase microextraction (SPME) followed by thermal desorption gas chromatography-ion trap mass spectrometry detection (GC-(ITD)MS), was developed and applied for the qualitative and semi-quantitative analysis of volatile components of Portuguese Terras Madeirenses red wines. The headspace SPME method was optimised in terms of fibre coating, extraction time, and extraction temperature. The performance of three commercially available SPME fibres, viz. 100 mum polydimethylsiloxane; 85 mum polyacrylate, PA; and 50/30 mum divinylbenzene/carboxen on polydimethylsiloxane, was evaluated and compared. The highest amounts extracted, in terms of the maximum signal recorded for the total volatile composition, were obtained with a PA coating fibre at 30 degrees C during an extraction time of 60 min with a constant stirring at 750 rpm, after saturation of the sample with NaCl (30%, w/v). More than sixty volatile compounds, belonging to different biosynthetic pathways, have been identified, including fatty acid ethyl esters, higher alcohols, fatty acids, higher alcohol acetates, isoamyl esters, carbonyl compounds, and monoterpenols/C(13)-norisoprenoids.  相似文献   

19.
Solid-phase microextraction (SPME) was optimised for the qualitative determination of the volatile flavour compounds responsible for the aroma of Greek Boutari wine. Several factors influencing the equilibrium of the aroma compounds between the sample and the SPME fiber were taken into account, including the extraction time, the extraction temperature, the sampling mode (headspace and direct immersion or liquid SPME), and the presence of salt. Four different SPME fibers were used in this study. namely poly(dimethylsiloxane) (PDMS), poly(acrylate), carbowax-divinylbenzene and divinylbenzene-carboxen on poly(dimethylsiloxane). The best results were obtained using the PDMS fiber during headspace extraction at 25 degrees C for 30 min after saturating the samples with salt. The optimised SPME method was then applied to investigate the qualitative aroma composition of three other Greek wines, namely Zitsa, Limnos and Filoni.  相似文献   

20.
The applicability of solid phase microextraction (SPME) to the headspace analysis of monoterpene hydrocarbons from conifer needles was examined. To this end, the influences of fiber coating thickness, exposure time, and exposure temperature on the enrichment of the different monoterpene hydrocarbons were investigated. The distribution constants between polydimethylsiloxane fiber and gas phase at a given temperature were found to be very different. A relation is therefore derived to calculate the distribution constants of substances not available from their Kováts retention indices. A slightly different approach could be the use of so-called “relative distribution factors”, not considering the actual volume of fiber coating. In view of the different enrichment conditions in SPME as well as the general problems of headspace analysis, a comparison with a completely different method of sample preparation is presented. Furthermore, some applications of SPME to the analysis of monoterpenes from pine needles are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号