首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Femtosecond high-order harmonic transient absorption spectroscopy is used to observe electromagnetically induced transparency-like behavior as well as induced absorption in the extreme ultraviolet by laser dressing of the He 2s2p (1Po) and 2p2 (1Se) double excitation states with an intense 800 nm field. Probing in the vicinity of the 1s2 → 2s2p transition at 60.15 eV reveals the formation of an Autler–Townes doublet due to coherent coupling of the double excitation states. Qualitative agreement with the experimental spectra is obtained only when optical field ionization of both double excitation states into the N = 2 continuum is included in the theoretical model. Because the Fano q-parameter of the unperturbed probe transition is finite, the laser-dressed He atom exhibits both enhanced transparency and absorption at negative and positive probe energy detunings, respectively.  相似文献   

2.
Fluorescence and fluorescence excitation spectra of phosphorus-containing organosilicon ligands O = PX2NHR (X = NMe2, OPh; R = CH2CH2CH2Si(Oet)3 and their Eu(III) complexes in acetonitrile solutions and in films are studied. In UV region (285–420 nm), bis(dimethylamido)triethoxysilylpropylamidophosphate (X = NMe2) and diphenyltriethoxysilylpropylamidophosphate (X = OPh) exhibit two emission bands, whose position and intensity depend on the nature of substituents at the phosphorus atom. The Eu complexes show the ligand and the cation luminescence. The emission bands of coordinated ligands are shifted to long-wave region. The cation luminescence appears as three or four bands due to f-f transitions from the excited 5 D 0 level to the lower 7 F 1–4 levels. The most intense transition is 5 D 07 F 2. The emission band in a region of 420 nm appears in solutions and films prepared from both pure ligands and their Eu(III) complexes. This band is due to luminescence of spatially crosslinked nanoparticles of sesquioxane structure. The intensity ratio of the Eu3+ emission bands changes when going from solutions to films, the emission intensity increases in a range of 420 nm. Films containing incorporated Er complexes with amidophosphates show intense luminescence of a matrix at 430 nm and a series of weak narrow bands due to the Er3+ cation at 550–700 nm.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 7, 2005, pp. 550–558.Original Russian Text Copyright © 2005 by Semenov, Cherepennikova, Klapshina, B. Bushuk, S. Bushuk, Douglas.  相似文献   

3.
The photochemical, photophysical and photobiological studies of a mixture containing cis-[Ru(H-dcbpy)2(Cl)(NO)] (H2-dcbpy = 4,4′-dicarboxy-2,2′-bipyridine) and Na4[Tb(TsPc)(acac)] (TsPc = tetrasulfonated phthalocyanines; acac = acetylacetone), a system capable of improving photodynamic therapy (PDT), were accomplished. cis-[Ru(H-dcbpy)2(Cl)(NO)] was obtained from cis-[Ru(H2-dcbpy)2Cl2]·2H2O, whereas Na4[Tb(TsPc)(acac)] was obtained by reacting phthalocyanine with terbium acetylacetonate. The UV–Vis spectrum of cis-[Ru(H-dcbpy)2(Cl)(NO)] displays a band in the region of 305 nm (λmax in 0.1 mol L−1 HCl)(π–π*) and a shoulder at 323 nm (MLCT), while the UV–Vis spectrum of Na4[Tb(TsPc)(acac)] presents the typical phthalocyanine bands at 342 nm (Soret λmax in H2O) and 642, 682 (Q bands). The cis-[Ru(H-dcbpy)2(Cl)(NO)] FTIR spectrum displays a band at 1932 cm−1 (Ru–NO+). The cyclic voltammogram of the cis-[Ru(H-dcbpy)2(Cl)(NO)] complex in aqueous solution presented peaks at E = 0.10 V (NO+/0) and E = −0.50 V (NO0/−) versus Ag/AgCl. The NO concentration and 1O2 quantum yield for light irradiation in the λ > 550 nm region were measured as [NO] = 1.21 ± 0.14 μmol L−1 and øOS = 0.41, respectively. The amount of released NO seems to be dependent on oxygen concentration, once the NO concentration measured in aerated condition was 1.51 ± 0.11 μmol L−1 The photochemical pathway of the cis-[Ru(H-dcbpy)2(Cl)(NO)]/Na4[Tb(TsPc)(acac)] mixture could be attributed to a photoinduced electron transfer process. The cytotoxic assays of cis-[Ru(H-dcbpy-)2(Cl)(NO)] and of the mixture carried out with B16F10 cells show a decrease in cell viability to 80% in the dark and to 20% under light irradiation. Our results document that the simultaneous production of NO and 1O2 could improve PDT and be useful in cancer treatment.  相似文献   

4.
Although a high heterogeneity of composition is awaited for humic substances, their complexation properties do not seem to greatly depend on their origins. The information on the difference in the structure of these complexes is scarce. To participate in the filling of this lack, a study of the spectral and temporal evolution of the Eu(III) luminescence implied in humic substance (HS) complexes is presented. Seven different extracts, namely Suwannee River fulvic acid (SRFA) and humic acid (SRHA), and Leonardite HA (LHA) from the International Humic Substances Society (USA), humic acid from Gorleben (GohyHA), and from the Kleiner Kranichsee bog (KFA, KHA) from Germany, and purified commercial Aldrich HA (PAHA), were made to contact with Eu(III). Eu(III)-HS time-resolved luminescence properties were compared with aqueous Eu3+ at pH 5. Using an excitation wavelength of 394 nm, the typical bi-exponential luminescence decay for Eu(III)-HS complexes is common to all the samples. The components τ1 and τ2 are in the same order of magnitude for all the samples, i.e., 40 ≤ τ1 (μs) ≤ 60, and 145 ≤ τ2 (μs) ≤ 190, but significantly different. It is shown that different spectra are obtained from the different groups of samples. Terrestrial extract on the one hand, i.e. LHA/GohyHA, plus PAHA, and purely aquatic extracts on the other hand, i.e., SRFA/SRHA/KFA/KHA, induce inner coherent luminescent properties of Eu(III) within each group. The 5D0 → 7F2 transition exhibits the most striking differences. A slight blue shift is observed compared to aqueous Eu3+ (λmax = 615.4 nm), and the humic samples share almost the same λmax ≈ 614.5 nm. The main differences between the samples reside in a shoulder around λ ≈ 612.5 nm, modelled by a mixed Gaussian–Lorentzian band around λ ≈ 612 nm. SRFA shows the most intense shoulder with an intensity ratio of I612.5/I614.7 = 1.1, KFA/KHA/SRHA share almost the same ratio I612.5/I614.7 = 1.2–1.3, whilst the LHA/GohyHA/PAHA group has a I612.5/I614.5 = 1.5–1.6. This shows that for the two groups of complexes, despite comparable complexing properties, slightly different symmetries are awaited.  相似文献   

5.
Radical cations and dications of two carotenoids astaxanthin and canthaxanthin were prepared by oxidation with FeCl3 in fluorinated alcohols at room temperature. Absorption and electroabsorption (Stark effect) spectra were recorded for astaxanthin cations in mixed frozen matrices at temperatures about 160 K. The D0→D2 transition in cation radical is at 835 nm. The electroabsorption spectrum for the D0→D2 transition exhibits a negative change of molecular polarizability, Δα=−1.2·10−38 C·m2/V (−105 A3), which seems to originate from the change in bond order alternation in the ground state rather than from the electric field-induced interaction of D1 and D2 excited states. Absorption spectrum of astaxanthin dication is located at 715–717 nm, between those of D0→D2 in cation radical and S0→S2 in neutral carotenoid. Its shape reflects a short vibronic progression and strong inhomogeneous broadening. The polarizability change on electronic excitation, Δα=2.89·10−38 C·m2/V (260 A3), is five times smaller than in neutral astaxanthin. This value reflects the larger energetic distance from the lowest excited state to the higher excited states than in the neutral molecule.  相似文献   

6.
The ground- and excited-state structures for a series of Os(II) diimine complexes [Os(NN)(CO)2I2] (NN = 2,2′-bipyridine (bpy) (1), 4,4′-di-tert-butyl-2,2′-bipyridine (dbubpy) (2), and 4,4′-dichlorine-2,2′-bipyridine (dclbpy) (3)) were optimized by the MP2 and CIS methods, respectively. The spectroscopic properties in dichloromethane solution were predicted at the time-dependent density functional theory (TD-DFT, B3LYP) level associated with the PCM solvent effect model. It was shown that the lowest-energy absorptions at 488, 469 and 539 nm for 13, respectively, were attributed to the admixture of the [dxy (Os) → π*(bpy)] (metal-to-ligand charge transfer, MLCT) and [p(I) → π*(bpy)] (interligand charge transfer, LLCT) transitions; their lowest-energy phosphorescent emissions at 610, 537 and 687 nm also have the 3MLCT/3LLCT transition characters. These results agree well with the experimental reports. The present investigation revealed that the variation of the substituents from H → t-Bu → Cl on the bipyridine ligand changes the emission energies by altering the energy level of HOMO and LUMO but does not change the transition natures.  相似文献   

7.
An electronic spectrum of the nickel monoboride radical has been observed for the first time, in a reaction between a nickel plasma and diborane. Numerous bands of 58Ni10B and 58Ni11B have been recorded between 442 and 503 nm in laser-induced fluorescence (LIF). Dispersed fluorescence experiments have also been performed. The LIF spectrum is dominated by a strong progression of bands of a [19.7]2Σ+X2Σ+ transition. Analyses have been carried out to yield the following 58Ni11B ground state parameters: r0 = 0.1698 nm, ωe = 778 cm−1, ωexe = 4.9 cm−1. Strong signals from NiH have also been observed.  相似文献   

8.
The fluorescence spectra of the mixed crystal system anthracene (A-h10) - perdeuteroanthracene (A-d10) have been studied over the full concentration range at temperatures between 1.6 and 77 K. There exists an amalgamated A-h10 - A-d10 S1 exciton band at all concentrations. The intrinsic fluorescence starts from the lower edge this S1 band at low temperatures. The edge shifts with a non-linear dependence with increasing concentration from 25097 cm−1 in the neat A-h10 crystal to 25156 cm−1 in the neat A-d10 crystal. The transition from the S1 band edge to the S0 ground state is always forbidden. Only transitions to levels intramolecular and lattice vibrations of the ground state have been observed. The fluorescence transitions take place to vibrational levels of both A-h10 and A-d10. This leads to a doublet structure of the vibrational bands. Due to the influence of quasi-resonance and exciton-superexchange the transitions to A-h10 vibrational states at low temperatures are more probable than it would correspond to the A-h10 concentration. Using the concentration shift of the lower S1 band edge an approximative determination of the energy exchange integral square sum to Σ M2 = 9600 cm−2 ± 50% is possible.  相似文献   

9.
The basic copper arsenate mineral strashimirite Cu8(AsO4)4(OH)4·5H2O from two different localities has been studied by Raman spectroscopy and complemented by infrared spectroscopy. Two strashimirite mineral samples were obtained from the Czech (sample A) and Slovak (sample B) Republics. Two Raman bands for sample A are identified at 839 and 856 cm−1 and for sample B at 843 and 891 cm−1 are assigned to the ν1 (AsO43−) symmetric and the ν3 (AsO43−) antisymmetric stretching modes, respectively. The broad band for sample A centred upon 500 cm−1, resolved into component bands at 467, 497, 526 and 554 cm−1 and for sample B at 507 and 560 cm−1 include bands which are attributable to the ν4 (AsO43−) bending mode. In the Raman spectra, two bands (sample A) at 337 and 393 cm−1 and at 343 and 374 cm−1 for sample B are attributed to the ν2 (AsO43−) bending mode. The Raman spectrum of strashimirite sample A shows three resolved bands at 3450, 3488 and 3585 cm−1. The first two bands are attributed to water stretching vibrations whereas the band at 3585 cm−1 to OH stretching vibrations of the hydroxyl units. Two bands (3497 and 3444 cm−1) are observed in the Raman spectrum of B. A comparison is made of the Raman spectrum of strashimirite with the Raman spectra of other selected basic copper arsenates including olivenite, cornwallite, cornubite and clinoclase.  相似文献   

10.
Calculations of the dynamics of the reactions O(1D) + H2 → OH + H, O(1D) + HD → OH + D, O(1D) + HD → OD + H and O(1D) + D2 → OD + D have been performed using the quasi-classical trajectory (QCT) method with symplectic integration. The theoretical calculations were carried out on the ground state 1A′ potential energy surfaces (PES) by Dobbyn and Knowles. The distributions of the dihedral angle P(r), the angle between k and j′, P(θr), and the product vibrational state are presented. The results show that the intermediate geometrical structures and lifetimes of the reactive collisions play a vital role in these reactions.  相似文献   

11.
A self-consistent-field-Xα-scattered-wave molecular orbital calculation was carried out on the [CpMoS(μ-S)]2(Cp = η5-C5H5) complex. The calculated results were used to rationalize the observed photochemical isomerization of the title complex to [CpMo(μ-S)][μ-S2]. It is proposed that a terminal sulfur (St) → Mo charge-transfer excitation is responsible for the isomerization, which is an intramolecular redox; i.e. Mo(V) is reduced to Mo(IV) and S2− is oxidized to S22− , a result consistent with the charge-transfer character of the excitation. Specifically, the transition responsible for the isomerization is proposed to be 16bu → 18ag (1Ag1Bu). The 18ag orbital is primarily Mo in character but it is also Mo---St π-antibonding; cleavage of the Mo---St π-bond facilitates the isomerization.  相似文献   

12.
We compared the binding affinity of 6-propyl-2-thiouracil (PTU) with native and destabilized human serum albumin (HSA) as a model to assess the binding ability of albumin in patients suffering from chronic liver or renal diseases. Urea (U) and guanidine hydrochloride (Gu·HCl) at a concentration of 3.0 M were used as denaturation agents.Increasing the concentration of PTU from 0.8 × 10−5 to 1.20 × 10−4 M in the systems with HSA causes a decrease in fluorescence intensity of the protein excited with both 280 and 295 nm wavelengths. The results indicate that urea and Gu·HCl bind to the carbonyl group and then to the NH-group. To determine binding constants we used the Scatchard plots. The presence of two classes of HSA–PTU binding sites was observed. The binding constants (Kb) are equal to 1.99 × 104 M−1 and 1.50 × 104 M−1 at λex = 280 nm, 5.20 × 104 M−1 and 1.65 × 104 M−1 at λex = 295 nm. At λex = 280 nm the number of drug molecules per protein molecule is aI = 1.45 and aII = 1.32 for I and II binding sites, respectively. At λex = 295 nm they are aI = 0.63 and aII = 1.54 for the I and II binding sites.The estimation of the binding ability of changed albumin in the uremic and diabetic patients suffering from chronic liver or renal diseases is very important for safety and effective therapy.  相似文献   

13.
Synthesis of six hydroxo-bridged binuclear manganese(III) complexes of formulae [MnL-X-MnL](ClO4) [X = OH (1–6)] along with a mononuclear manganese(III) complex (7) [Mn(L)(L′)(MeOH)2] [HL′ = 2-(2-hydroxy-phen-yl)benzimidazole] and two carboxylate-bridged binuclear manganese(III) complexes (8) and (9) are described. The complexes have been characterized by the combination of i.r., u.v.-vis spectroscopy, magnetic moments and by their redox properties. The electronic spectra of all the complexes exhibit almost identical features consisting of two d–d bands at ca. 550 and 600 nm, one MLCT band at ca.400 nm, together with two π–π* intra-ligand transitions at ca. 250 nm and ca.300 nm. Room temperature magnetic data range from μ = 2.7–3.0 BM indicates some super-exchange between the binuclear metal centers via bridging hydroxo/carboxylato groups. The X-ray crystal structure of the binuclear complex (5) revealed that it has a symmetric MnIIIN2O2 core bridged by a hydroxyl group. The X-ray analysis of the mononuclear complex (7) showed that the manganese-center possesses a distorted octahedral geometry. Electrochemical properties of hydroxo-bridged manganese(III) complexes (1–6) show identical features consisting of an irreversible and a quasi-reversible reduction corresponding to the Mn2III → MnIIMnIII → MnIIMnII couples in the voltammogram. It was found that electron withdrawing substituents on the ligand result in easier reduction. Complex (7) displays an irreversible reduction at 0.08 V and a reversible oxidation at 0.45V assignable to the MnIII → MnII reduction and MnIII → MnIV oxidation, respectively. The carboxylate-bridged compound (8) exhibits two irreversible oxidations at 0.4 and 0.6 V, probably due to Mn2III → MnIIIMnIV → MnIVMnIV oxidations and shows a quasi-reversible reductive wave at −0.85 V, tentatively assigned to Mn2III → MnIIMnIII reduction.  相似文献   

14.
Temperature dependent Raman study of C–H in-plane bending mode (~1163 cm?1 and ~1190 cm?1) and C–C stretching mode of phenyl ring (~1571 cm?1 and ~1594 cm?1) of N-(4-n-pentyloxybenzylidene)-4′-heptylaniline (5O.7) has been done. Vibrational assignment and potential energy distribution (PED) of individual modes have been calculated employing density functional theory (DFT) for the first time. The SB  SC transition is nicely depicted in the variation of the linewidth of the ~1163 cm?1 band and the peak position of ~1594 cm?1 band with temperature. Because of a small amount of charge density transfer from the core part to the alkyl chain region, the ~1163 cm?1 band shifts towards lower wavenumber side whereas the ~1190 cm?1 band towards higher wavenumber side at SB  SC transition. The ~1571 cm?1 and ~1594 cm?1 bands are assigned as 8a and 8b modes, whose relative intensity variation with temperature gives the evidence of increased possibility of C–H bending motion of the linking group and the C–C stretching of the alkyl chain in SC phase.  相似文献   

15.
A vibrational–rotational spectrum of the ν = 2 transitions of a high-temperature molecule AlF was observed between 1490 and 1586 cm−1 with a diode laser spectrometer. Measurements were made on the ν = 3–1, 4–2, 5–3 and 8–6 bands at a temperature of 900 °C. Measured spectral lines were fitted to effective band constants ν0, Bν and Dν for each band. Present measurements were made with only one Pb-salt laser diode. Physical significance of the effective band constants is discussed.  相似文献   

16.
Borate glasses doped with trivalent europium were prepared by the conventional melt quenching technique, in the chemical composition of (49.99-x)B2O3 + 25Li2O + 25LiF+xEu2O3 by varying the concentration of the rare earth ion in the order 0.01, 0.1, 1, 2 and 3 wt% and their structural, luminescence and thermal behavior have been reported. The XRD and FTIR spectra reveal the glass structure and the functional groups. The UV–VIS, luminescence spectra and lifetime of the Eu3+ ions were measured. The local site symmetry around the Eu3+ ions were evaluated through the luminescence intensity ratio (R) of the 5D0 → 7F2 to 5D0 → 7F1 transitions. Optical measurements have been carried out to explore the optical properties such as bonding parameters, Judd–Ofelt parameters, stimulated emission cross-section, transition probability, branching ratio, radiative lifetime, etc. The lifetime measurements of the 5D0 level as a function of the concentration of Eu3+ ion have been found and is comparable to other reported for Eu3+ doped borate, phosphate glasses and higher than that for the tellurite glasses. The thermal properties such as glass transition, crystallization and melting temperatures of the Eu3+ glasses were studied through the DSC traces in the temperature range of 30−1200 °C at a heating rate of 10 °C per minute. The change in optical properties with the variation of Eu3+ ion concentration have been discussed and compared with similar results.  相似文献   

17.
As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.  相似文献   

18.
This paper reports on comparative investigation of structure and luminescence properties of tetragonal LiYF4 and BaYF5, and hexagonal NaYF4 phosphors codoped with Er3+/Yb3+ by a facile hydrothermal synthesis. The products were characterized by X-ray diffractometer, scanning electron microscope, and photoluminescence spectroscopy. Intense visible emissions centered at around 525, 550 and 650 nm, originated from the transitions of 2H11/2 → 4I15/2, 4S3/2 → 4I15/2, and 4F9/2 → 4I15/2 of Er3+, respectively, have been observed in all the samples upon excitation with a 980 nm laser diode, and the involved mechanisms have been explained. Based on the green up-conversion emission performance, the Yb3+ concentrations of Er3+/Yb3+-codoped LiYF4, BaYF5, and NaYF4 phosphors have been optimized to be 10, 20, and 20 mol.%, respectively. The quadratic dependence of fluorescence on excitation laser power has confirmed that two-photon contribute to up-conversion of the green–red emissions.  相似文献   

19.
We report that glass–ceramic Li2S–P2S5 electrolytes can be prepared by a single step ball milling (SSBM) process. Mechanical ball milling of the xLi2S·(100 − x)P2S5 system at 55 °C produced crystalline glass–ceramic materials exhibiting high Li-ion conductivity over 10−3 S cm−1 at room temperature with a wide electrochemical stability window of 5 V. Silicon nanoparticles were evaluated as anode material in a solid-state Li battery employing the glass–ceramic electrolyte produced by the SSBM process and showed outstanding cycling stability.  相似文献   

20.
Transparent glasses, melt quenching derived, containing 10RO·20Bi2O3·(70 ? x)B2O3·xTiO2 [R = Ca, Sr] with x = 0, 0.5, 1.0 wt% were characterized by X-ray powder diffraction. Physical and spectroscopic properties viz., density, absorption, emission, electron paramagnetic resonance (EPR) and FTIR were investigated. The absorption band around 823 nm in pure glass samples is attributed to the electronic transition of 3P0 to 3P2 of Bi+ radicals. A small absorption hump centered around 609 nm is found in all doped glasses due to 2T2g to 2Eg transition of octahedral Ti3+ ions. The emission results revealed that all the samples exhibit a broad emission band covering entire visible-light range, with λex = 360 nm, centered 470–520 nm corresponds to electronic transition of 3P1 to 1S0 of Bi3+ ions, therefore the present materials can be potentially used as tunable or full-color display systems. And a strong emission around 706 nm with λex = 514 nm due to transition of 2P3/2 to 2P1/2 of Bi2+ ions. In SrO mixed glasses Ti4+ ions effect the environment of Bi3+ ion symmetry units from C2 to C3i. A small EPR signal (at room temperature) is observed in titanium doped glasses due to Ti3+ ions. In both the series with increase of TiO2 concentration BO4 units are gradually converted into BO3 units and new cross linkages are formed, like B–O–Ti, Bi–O–Ti at the expense of B–O–B bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号