首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical study of three-dimensional liquid sloshing in tanks   总被引:1,自引:0,他引:1  
A numerical model NEWTANK (Numerical Wave TANK) has been developed to study three-dimensional (3-D) non-linear liquid sloshing with broken free surfaces. The numerical model solves the spatially averaged Navier–Stokes equations, which are constructed on a non-inertial reference frame having arbitrary six degree-of-freedom (DOF) of motions, for two-phase flows. The large-eddy-simulation (LES) approach is adopted to model the turbulence effect by using the Smagorinsky sub-grid scale (SGS) closure model. The two-step projection method is employed in the numerical solutions, aided by the Bi-CGSTAB technique to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate volume-of-fluid (VOF) method is used to track the distorted and broken free surface. Laboratory experiments are conducted for both 2-D and 3-D non-linear liquid sloshing in a rectangular tank. A linear analytical solution of 3-D liquid sloshing under the coupled surge and sway excitation is also developed in this study. The numerical model is first validated against the available analytical solution and experimental data for 2-D liquid sloshing of both inviscid and viscous fluids. The validation is further extended to 3-D liquid sloshing. The numerical results match with the analytical solution when the excitation amplitude is small. When the excitation amplitude is large where sloshing becomes highly non-linear, large discrepancies are developed between the numerical results and the analytical solutions, the former of which, however, agree well with the experimental data. Finally, as a demonstration, a violent liquid sloshing with broken free surfaces under six DOF excitations is simulated and discussed.  相似文献   

2.
This paper presents a model formulation capable of analyzing large-amplitude free vibrations of a suspended cable in three dimensions. The virtual work-energy functional is used to obtain the non-linear equations of three-dimensional motion. The formulation is not restricted to cables having small sag-to-span ratios, and is conveniently applied for the case of a specified end tension. The axial extensibility effect is also included in order to obtain accurate results. Based on a multi-degree-of-freedom model, numerical procedures are implemented to solve both spatial and temporal problems. Various numerical examples of arbitrarily sagged cables with large-amplitude initial conditions are carried out to highlight some outstanding features of cable non-linear dynamics by accounting also for internal resonance phenomena. Non-linear coupling between three- and two-dimensional motions, and non-linear cable tension responses are analyzed. For specific cables, modal transition phenomena taking place during in-plane vibrations and ensuing from occurrence of a dominant internal resonance are observed. When only a single mode is initiated, a higher or lower mode can be accommodated into the responses, making cable spatial shapes hybrid in some time intervals.  相似文献   

3.
This paper brings into focus some of the interesting effects arising from the non-linear motion of the liquid free surface, due to sloshing, in a partially filled laminated composite container along with the associated coupling due to fluid-structure interaction effects. The finite element method based on two-dimensional fluid and structural elements is used for the numerical simulation of the problem. A numerical scheme is developed on the basis of a mixed Eulerian-Lagrangian approach, with velocity potential as the unknown nodal variable in the fluid domain and displacements as the unknowns in the structure domain. The FE formulation based on Galerkin weighted residual method along with an iterative solution procedure are explained in detail followed by a few numerical examples. Numerical results obtained by the present investigation for the rigid containers are first compared with the existing solutions to validate the code for non-linear sloshing without fluid-structure coupling. Thereafter the computational procedures are advanced to obtain the coupled interaction effect of non-linear sloshing in laminated composite containers.  相似文献   

4.
组合线性弹簧振子中的非线性振动   总被引:1,自引:0,他引:1  
廖旭  任学藻 《大学物理》2008,27(2):25-28
从拉格朗日方程出发,分析了几种常见的线性弹簧组合,对作非线性振动弹簧振子进行了数值求解.当作微小振动时,正好是几种典型的非线性振动.通过计算得出解析解并与数值解进行了对比.  相似文献   

5.
Three-dimensional numerical modeling is performed for development of surface waves under the action of wind. The model is based on equations for potential motion of a fluid with a free surface, which are transformed to a curvilinear system of coordinates where the height is counted from the moving surface. The problem is solved in the doubly periodic domain by the Fourier method with calculation of nonlinearity using a high-resolution mesh (Fourier transform method). The three-dimensional elliptic equation for the velocity potential is solved as the Poisson equation by the marching method with iterations. The energy input from wind and the wave energy dissipation are introduced on the basis of the earlier developed and verified algorithms. The long-period evolution of the three-dimensional flow is demonstrated with the wave surface spectra and energy input and output spectra. The results are compared to the experimental data.  相似文献   

6.
A three-dimensional numerical framework is presented that examines the burning of aluminized solid propellants. The numerical solver accounts for heat conduction in the solid, combustion in the gas phase, and coupling of these by means of a level set method. The aluminium particles are treated as heat conducting solid spheres. The aluminium particle detachment process is modelled using level sets, but once the particle becomes free from the surface, its subsequent motion in the gas phase is governed by particle dynamics. Some preliminary calculations of the three-dimensional combustion field supported by a pack with embedded aluminium particles are presented.  相似文献   

7.
We introduce a marker-particle method for the computation of three-dimensional solid surface morphologies evolving by surface diffusion. The method does not use gridding of surfaces or numerical differentiation, and applies to surfaces with finite slopes and overhangs. We demonstrate the method by computing the evolution of perturbed cylindrical wires on a substrate. We show that computed growth rates at early times agree with those predicted by the linear stability analysis. Furthermore, when the marker particles are redistributed periodically to maintain even spacing, the method can follow breakup of the wire.  相似文献   

8.
The response of a two-degree-of-freedom system with autoparametric coupling under the action of broad band random excitation is investigated. The system corresponds to the autoparametric vibration absorber and is also typical of many common structural configurations. A method based upon the Markov vector approach, together with an approximate treatment of third and higher statistical moments, is used to derive a set of fourteen coupled non-linear equations for the first and second moments of the system responses. A numerical integration procedure is used to obtain quantitative results for the system mean and mean square responses over a range of system parameters.The results show that large random motions of the coupled system may occur when the internal detuning parameter is close to the principal internal resonance, and that these motions may give rise to a suppression effect on the random motions of the main system. A feature of the results is that under conditions of internal resonance the random motions are found to be quasi-stationary, with steady oscillatory terms in the response moments. This suggests the possibility of entrainment of regular harmonic responses by the system random motions.  相似文献   

9.
The non-linear free vibrations of stepped thickness beams are analyzed by assuming sinusoidal responses and using the transfer matrix method. The numerical results for clamped and simply supported, one-stepped thickness beams with rectangular cross-section are presented and the effects of the beam geometry on the non-linear vibration characteristics are discussed. The results are also compared with those obtained by a Galerkin method in which the linear mode function of the beam is used. The use of a Galerkin method seems to considerably overestimate the non-linearity of the stepped thickness beam in certain cases.  相似文献   

10.
The motions of a two degree of freedom mechanical oscillator in a state of internal resonance due to the non-linear coupling between its modes are analyzed by the method of multiple scales. The system is connected by a motor to a vertical shaft driven at a constant spin rate relative to inertial space. It is shown that the non-linear resonance phenomenon can effectively be controlled by properly changing the spin rate of the motor. In addition, the transition curves that separate the non-linear resonant and the non-resonant motions of the system are also determined analytically by a straightforward perturbation method. The analytical expression for the transition curves is used in connection with the multiple scale analysis to yield a refined approximation for the main characteristics of the non-linear resonant motion.  相似文献   

11.
The effects of large vibration amplitudes on the first two axisymmetric mode shapes of clamped thin isotropic circular plates are examined. The theoretical model based on Hamilton's principle and spectral analysis developed previously by Benamar et al. for clamped-clamped beams and fully clamped rectangular plates is adapted to the case of circular plates using a basis of Bessel's functions. The model effectively reduces the large-amplitude free vibration problem to the solution of a set of non-linear algebraic equations. Numerical results are given for the first and second axisymmetric non-linear mode shapes for a wide range of vibration amplitudes. For each value of the vibration amplitude considered, the corresponding contributions of the basic functions defining the non-linear transverse displacement function and the associated non-linear frequency are given. The non-linear frequencies associated to the fundamental non-linear mode shape predicted by the present model were compared with numerical results from the available published literature and a good agreement was found. The non-linear mode shapes exhibit higher bending stresses near to the clamped edge at large deflections, compared with those predicted by linear theory. In order to obtain explicit analytical solutions for the first two non-linear axisymmetric mode shapes of clamped circular plates, which are expected to be very useful in engineering applications and in further analytical developments, the improved version of the semi-analytical model developed by El Kadiri et al. for beams and rectangular plates, has been adapted to the case of clamped circular plates, leading to explicit expressions for the higher basic function contributions, which are shown to be in a good agreement with the iterative solutions, for maximum non-dimensional vibration amplitude values of 0.5 and 0.44 for the first and second axisymmetric non-linear mode shapes, respectively.  相似文献   

12.
Eulerian shock-capturing schemes have advantages for modelling problems involving complex non-linear wave structures and large deformations in solid media. Various numerical methods now exist for solving hyperbolic conservation laws that have yet to be applied to non-linear elastic theory. In this paper one such class of solver is examined based upon characteristic tracing in conjunction with high-order monotonicity preserving weighted essentially non-oscillatory (MPWENO) reconstruction. Furthermore, a new iterative method for finding exact solutions of the Riemann problem in non-linear elasticity is presented. Access to exact solutions enables an assessment of the performance of the numerical techniques with focus on the resolution of the seven wave structure. The governing model represents a special case of a more general theory describing additional physics such as material plasticity. The numerical scheme therefore provides a firm basis for extension to simulate more complex physical phenomena. Comparison of exact and numerical solutions of one-dimensional initial values problems involving three-dimensional deformations is presented.  相似文献   

13.
An incremental variational equation for non-linear motions of multilayer beams composed of n stiff layers and (n ? 1) soft cores is derived from the dynamic virtual work equation by an appropriate integration procedure. The kinematical hypotheses of Euler-Bernoulli and Timoshenko beam theories are used to describe the displacement fields of the stiff layers and cores respectively. An efficient solution procedure of incremental harmonic balance method type, with use of finite elements, is developed. To demonstrate its capability, some problems in free non-linear vibrations of multilayer beams are treated by using the procedure. Results are compared with those available in the literature. The effects of damping are also included in this investigation but are described in Part II [1] of this paper in which a number of undamped and damped forced non-linear vibration problems are studied. Results in the form of tables and plots are also presented and comparisons are made with those available in the literature.  相似文献   

14.
The stability and dynamics of a cantilevered pipe conveying fluid with motion-limiting constraints and a linear spring support have been investigated. Emphasis is placed on analyzing local qualitative behavior of the system in the neighborhood of a doubly degenerate point. Using some qualitative reduction methods of dynamical system theory, the four-dimensional differential equation of motion is reduced to a two-dimensional one, and then the possible motions of the pipe are predicted through analyzing bifurcations of the solution to the reduced equation of motion. The unfolding result is found to be in good agreement with the result obtained using the numerical method. It is also found that there exist the quasi-periodic motions and route to chaos through breakup of the quasi-periodic torus surface in some parameter region of the system, which differs from that of periodic-doubling bifurcation route found earlier in this system. Numerical simulations have been performed using the four-dimensional equation of motion to confirm the analytical results.  相似文献   

15.
An efficient compact-2D finite-difference time-domain method is presented for the numerical analysis of guided modes in waveguides that may include negative dielectric permittivity, negative magnetic permeability and negative refractive index materials. Both complex variable and real variable methods are given. The method is demonstrated for the analysis of channel-plasmon-polariton guided modes in triangular groves on a metal surface. The presented method can be used for a range of waveguide problems that were previously unsolvable analytically, due to complex geometries, or numerically, due to computational requirements of conventional three-dimensional finite-difference time-domain methods. A three-dimensional finite-difference time-domain algorithm that also allows analysis in the presence of bound or free electric and equivalent magnetic charges is presented and an example negative refraction demonstrates the method.  相似文献   

16.
针对水陆两栖飞机静水面高速滑行过程的运动响应大、流场强非线性等问题,提出了一种基于传统动网格技术的"状态预估——精确计算"的数值模拟方法:通过求解Reynolds平均N-S方程结合运动方程来模拟飞机静水面滑行时的流场特征和运动特性,数值模拟方法为隐式有限体积法,湍流模型采用k-ω(SST Menter)结合壁函数进行处理,自由液面捕捉采用VOF方法;数值计算时,首先采用粗网格对简化后的飞机在不同航速下的姿态和升沉进行快速预估,再将飞机置于预估状态下进行精确网格划分,最后进行精确数值计算分析.为了验证数值模拟结果的正确性,在物理水池中进行了静水拖曳试验,将数值计算结果与试验结果进行对比分析可得:数值计算与水池试验的流场特征吻合,且阻力、姿态和升沉的计算精度达到90%,验证了数值模拟方法的可行性.   相似文献   

17.
三元阵通常被用来完成测距任务,要实现三维定位需要与其他设备合作或增加阵元数来完成。针对常规三元阵三维定位问题,本文基于水声信道传播特性,通过虚拟阵元实现三元阵的全方位被动三维定位;同时,本文通过对三元阵进行非直线布阵来解决直线三元阵对 轴方向定位的左右模糊问题,实现全方位三维定位。数值分析和仿真表明该方法能够很好的完成三元阵全方位三维定位问题,尤其对浅海近程目标。  相似文献   

18.
In this short note, a shape and topology optimization method is presented for multiphysics actuators including geometrically nonlinear modeling based on an implicit free boundary parameterization method. A level set model is established to describe structural design boundary by embedding it into the zero level set of a higher-dimensional level set function. The compactly supported radial basis functions (CSRBF) are introduced to parameterize the implicit level set surface with a high level of accuracy and smoothness. The original more difficult shape and topology optimization driven by the Hamilton–Jacobi partial differential equation (PDE) is transferred into a relatively easier parametric (size) optimization, to which many well-founded optimization algorithms can be applied. Thus the structural optimization is transformed to a numerical process that describes the design as a sequence of motions of the design boundaries by updating the expansion coefficients of the size optimization. Two widely studied examples are chosen to demonstrate the effectiveness of the proposed method.  相似文献   

19.
The grazing bifurcation, stick phenomena and periodic motions in a periodically forced, nonlinear friction oscillator are investigated. The nonlinear friction force is approximated by a piecewise linear, kinetic friction model with the static force. The total forces for the input and output flows to the separation boundary are introduced, and the force criteria for the onset and vanishing of stick motions are developed through such input and output flow forces. The periodic motions of such an oscillator are predicted analytically through the corresponding mapping structure. Illustrations of the periodic motions in such a piecewise friction model are given for a better understanding of the stick motion with the static friction. The force responses are presented, which agreed very well with the force criteria. If the fully nonlinear friction force is modeled by several portions of piecewise linear functions, the periodically forced, nonlinear friction oscillator can be predicted more accurately. However, for the fully nonlinear friction force model, only the numerical investigation can be carried out.  相似文献   

20.
This paper presents our numerical and experimental results of the bifurcation found in Taylor-Couette system with a free surface. The lengths of the two concentric cylinders are finite and their axes are parallel to the direction of the gravitational force. When the end walls of the cylinders are fixed and stationary, numerical and experimental studies have shown that the flow has multiple patterns depending on the cylinder lengths and the Reynolds numbers. Experimental studies on flows with free surfaces also gave various flow modes. Our result shows that the measured and predicted time-dependent displacements of the free surface are in favorable agreement. In case of the cylinder length comparable with the gap width between the cylinders, gradual accelerations of the inner cylinder bring the normal mode flows with one, three and five toroidal vortices. The exchanges of stabilities between these flow modes are summarized in a phase diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号