首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The deuterium isotope effect on the 13C NMR chemical shifts of some α-2-hydroxyaryl-N-phenylnitrones (Schiff base N-oxides) was studied. The existence of an intramolecular hydrogen bond with the proton localized on the phenolic oxygen atom was evidenced. Exceptionally large isotope effects ΔC-2(D) and ΔC-α(D) suggest that the substitution of the proton of the OH group by deuterium leads to a weakening of the hydrogen bond and some conformational changes in the molecule. This conclusion was drawn on the basis of a comparison of the deuterium isotope effects of Schiff base N-oxides and parent Schiff bases. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Deuterium isotope effects on 13C chemical shift of tetrabutylammonium salts of Schiff bases, derivatives of amino acids (glycine, L-alanine, L-phenylalanine, L-valine, L-leucine, L-isoleucine and L-methionine) and various ortho-hydroxyaldehydes in CDCl3 have been measured. The results have shown that the tetrabutylammonium salts of the Schiff bases amino acids, being derivatives of 2-hydroxynaphthaldehyde and 3,5-dibromosalicylaldehyde, exist in the NH-form, while in the derivatives of salicylaldehyde and 5-bromosalicylaldehyde a proton transfer takes place. The interactions between COO- and NH groups stabilize the proton-transferred form through a bifurcated intramolecular hydrogen bond.  相似文献   

4.
Five Schiff bases, derived from substituted salicylaldehydes and methylamine, have been investigated by analysis of C-C and N-C coupling constants to check potential of those spectral parameters in intramolecular hydrogen bonds research. Two remaining imines, without OH substituent in position 2, were applied as model compounds for imine structure. The one-bond C-C couplings in aromatic ring provide valuable information about bond orders and correlate with bond lengths obtained by X-ray. The one-bond heteronuclear C-N couplings can be used very easily to distinguish between imine and enamine form of Schiff bases. Additionally the two-bond N-C couplings supply interesting information about geometry of the investigated molecules.  相似文献   

5.
3-X-2(1H)-吡啶酮互变异构体系的理论计算   总被引:2,自引:0,他引:2  
2(1H)-吡啶酮类化合物常呈现出诱人的生物活性[1,2].由于酮式和烯醇式结构具有互变异构化性质,因此确定其互变异构平衡体系中的优势结构及研究取代基对平衡体系的影响,对阐明该类化合物的生物活性及进行构效关系的研究有着重要的意义.当其3-位含有可与2-位羰基或2-位羟基形成分子内氢键的基团时,势必对互变异构平衡产生影响.基于该类化合物的互变异构平衡有着强烈的溶剂效应[3],本文对3-X-2(1H)-吡啶酮(X=NO2,NH2,COOH)及其烯醇式互变异构体分别在气相和溶液中进行了理论计算,考察了…  相似文献   

6.
The fractionation factor is defined as the equilibrium constant for the reaction: R – H + DOH R – D + HOH. Of interest are values of fractionation factors for reactions where reactants and/or products form intramolecular low-barrier hydrogen bonds. Experimentally measured isotopic fractionation factors are usually interpreted via a one-dimensional potential energy surface along the intrinsic proton hydrogen bond coordinate. Such a one-dimensional picture cannot be completely correct. Intramolecular motions, such as vibrations and librations, can modulate the underlying potential energy surface along the hydrogen bond coordinate and thus affect the isotopic fractionation factor. We have recently generated a picture of the motion of the proton in a low-barrier hydrogen bond as taking place in an effective single-dimensional potential, which we term the potential of mean force (PMF). In this paper, we compute the PMF for a molecule with an intramolecular hydrogen bond in order to quantify the effect of intramolecular motions on the fractionation factor. The PMF and isotopic fractionation factor are computed with a combination of high-level density functional theory and molecular dynamics simulations.  相似文献   

7.
Ab initio and density functional calculations are applied to study the influence of an increasing number of chlorine substituents on the properties of the intramolecular hydrogen bond in substituted Mannich bases. It is shown, that not only the acidity of the proton donor, which depends on the number of chlorine atoms at the aromatic ring, but also steric interactions modify the geometry of the hydrogen bond. Specific interactions of O–ClH–O hydrogen-bonding in some derivatives are estimated by calculations on related chlorophenols.  相似文献   

8.
In the crystal, the 5Z-carboxymethylene-2-chloro-4,4-dimethoxy-3-N,N-dimethyl-aminocyclopent-2-en-1-one molecule has an intramolecular hydrogen bond (stabilized in the chelate form) between the proton of the carboxy group and the oxygen atom of the keto group. The methoxy groups are in an antiperiplanar conformation and are synclinal with respect to the dimethylamino group and the double bond of the carboxylmethylene fragment. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1979–1981, November, 1997.  相似文献   

9.
The excited-state dynamics of the excited-state proton transfer and intramolecular twisted charge transfer (TICT) reactions of a molecular photoswitch 2-(4′-diethylamino-2′-hydroxyphenyl)-1H-imidazo-[4,5-b]pyridine (DHP) in aprotic and alcoholic solvents have been theoretically investigated by using time-dependent density functional theory. The excited-state intramolecular proton transfer (ESIPT) reaction of DHP proceeding upon excitation in all the solvents has been confirmed, and the dual emission has been assigned to the enol and keto forms of DHP. However, for methanol and ethanol solvents within strong hydrogen-bonded capacity, the intermolecular hydrogen bonds between DHP and methanol/ethanol would promote an excited-state double proton transfer (ESDPT) along the hydrogen-bonded bridge. Importantly, the previous proposed ESDPT-triggered TICT mechanism of DHP in methanol and ethanol was not supported by our calculations. The twist motion would increase the total energy of the system for both the products of ESIPT and ESDPT. According to the calculations of the transition states, the ESDPT reaction occurs much easier in keto form generated by ESIPT. Therefore, a sequential ESIPT and ESDPT mechanism of DHP in methanol and ethanol has been reasonably proposed.  相似文献   

10.
彭亚晶  付星  蒋艳雪 《化学通报》2015,78(10):923-927
采用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)研究了气相水杨酸(SA)分子的激发态氢键动力学过程。通过对水杨酸分子基态和激发态结构的优化,以及对其稳态吸收和发射光谱特性、前线分子轨道、红外振动光谱和势能曲线的计算分析,阐明水杨酸分子内质子转移可在激发态下自发地发生,导致其激发态可存在烯醇式和酮式两种异构体结构,并揭示了这种质子转移源于分子内电荷转移的激发态氢键的加强机制。  相似文献   

11.
Two new orthohydroxy Schiff bases, 7-phenylsalicylidene benzylamine (PSBA) and 7-ethylsalicylideneaniline (ESA) have been synthesized. The excited state intramolecular proton transfer (ESIPT) and the structure of PSBA and ESA in its crystalline form and in the solvents n-hexane, n-heptane and 1,4-dioxane have been investigated by means of absorption, emission and nanosecond spectroscopy at room temperature and 77K. One ground state species has been detected both in neutral and basic solutions of both PSBA and ESA: the cis-enol form with an intramolecular hydrogen bond. The ESIPT and formation of keto tautomer are evidenced by a large Stokes shifted emission (approximately 12000 cm(-1)) at room temperature only in the case of ESA. On the other hand the keto tautomer is the predominant species at 77K in a solid matrix and as a solid sample at room temperature both in the case of ESA and PSBA. In the case of both ESA and PSBA the more intense, higher energy emission is due to the species which has not undergone ESIPT and attributed mainly due to cis-enol form. The trans-enol form is also observed by changing the excitation wavelength. Both the compounds are found to undergo a structural change to a zwitterionic and intermolecular hydrogen bonded form in the presence of a strong base like triethylamine. From the nanosecond measurements and quantum yield of fluorescence we have estimated the decay rates of proton transfer reaction in the case of PSBA. Our theoretical calculation at the AM1 level of approximation shows that the ground singlet state has a rather large activation barrier both in the case of PSBA and ESA. The barrier height is much lower on the corresponding excited singlet surface only in the case of ESA. The process is predicted to be endothermic in the ground state and exotherrmic in the excited singlet state.  相似文献   

12.
用从头算和密度泛函理论研究了对硝基二苯乙烯作为生色团连接的2-(2-羟基-苯基)-苯骈三氮唑的衍生物2-羟基-5-[对硝基-二苯乙烯基-氧亚甲基]-苯基-(2H-苯骈三氮唑)(C1)和4′-硝基-3,4-二[2-羟基-(2H-苯骈三氮唑)-苄氧基]-二苯乙烯(C2)发生激发态分子内质子转移(ESIPT)的可能性.系统研究了C1和C2发生ESIPT的互变异构体的基态与激发态的性质变化,包括相关的键长、键角等结构参数,Mulliken电荷和偶极矩,前线轨道以及势能曲线.计算结果表明,对于C1来讲,酮式(keto)的基态(K)不存在稳定结构,因此发生基态分子内质子转移(GSIPT)可能性很小.酮式的激发态(K*)的氢键强度要远强于烯醇式(enol)的激发态(E*)的氢键强度.分子在光致激发后,质子供体所带负电荷减小而质子受体所带负电荷增加.在K*,HOMO→LUMO的电子跃迁导致电子密度从"酚环"向质子化杂环转移.E*→K*跃迁只需要克服较小的能垒(约41 kJ.mol-1).计算结果表明C1发生ESIPT的可能性很大.C2由于具有高能量,其具有基态的单质子转移特征的异构体EK(同时含烯醇E与酮K结构)、具有基态的双质子转移特征的异构体2K(含有双酮结构),以及具有双酮结构特征的激发态2K*均无法获得它们的稳定结构,因此,基态分子内单或双质子转移和激发态分子内双重质子转移发生的可能性极小.然而,由于双烯醇式的激发态(2E*)和EK的激发态(EK*)存在稳定结构,且2E*→EK*跃迁具有低能垒,因此C2有可能发生激发态分子内单重质子转移.本文进一步计算了两个分子的紫外-可见吸收光谱与荧光发射光谱,获得了具有较大斯托克位移的ESIPT的荧光发射峰.  相似文献   

13.
The water-assisted tautomerization of glycine has been investigated at the B3LYP/6-31+G** level using supermolecules containing up to six water molecules as well as considering a 1:1 glycine-water complex embedded in a continuum. The conformations of the tautomers in this mechanism do not display an intramolecular H bond, instead the functional groups are bridged by a water molecule. The replacement of the intramolecular H bond by the bridging water reduces the polarity of the N-H bond in the zwitterion and increases that of the O-H bond in the neutral, stabilizing the zwitterion. Both the charge transfer effects and electrostatic interactions stabilize the nonintramolecularly H-bonded zwitterion conformer over the intramolecularly hydrogen bonded one. The nonintramolecularly H-bonded neutral is favored only by charge transfer effects. Although there is no strong evidence whether the intramolecularly hydrogen bonded or non hydrogen bonded structures are favored in the bulk solution represented as a dielectric continuum, it is likely that the latter species are more stable. The free energy of activation of the water-assisted mechanism is higher than the intramolecular proton transfer channel. However, when the presumably higher conformational energy of the zwitterion reacting in the intramolecular mechanism is taken into account, both mechanisms are observed to compete. The various conformers of the neutral glycine may form via multiple proton transfer reactions through several water molecules instead of a conformational rearrangement.  相似文献   

14.
The two crystal structures of 5-chloro-2-hydroxy-benzamide and 2-hydroxy-N,N-diethyl-benzamide were determined by X-ray diffraction at 100 K. The intramolecular and intermolecular hydrogen bonds were found in these structurally similar 2-hydroxy-benzamides. Analysis of the hydrogen bonding was carried out on the basis of X-ray data, infrared spectra, and DFT calculations. Disruption of the intramolecular hydrogen bonding in the solid state by a steric effect is shown. Conformational analysis and potential energy calculations as functions of the turning angle around the Caryl–Calkyl bond were conducted. The values obtained for the HOMA index indicate mutual compensation of the amide and hydroxyl groups (due to the high degree aromaticity of the phenyl ring).  相似文献   

15.
A structural feature of hydrogen bonding chains found in the crystals of trifluoromethylated amino alcohols is reported. Hydrogen bondings of 3-(N,N-dialkylamino)-1,1,1-trifluoro-2-propanols construct chiral spiral hydrogen bonding chains. Lone pairs on the nitrogen atoms of the amino alcohols participate in two hydrogen bondings. Detailed structural analysis of the hydrogen bonds of the 3-(N,N-dimethylamino)-1,1,1-trifluoro-2-propanol suggested that the chain built up with alternating intermolecular-medium and intramolecular-weak hydrogen bonds. The medium intermolecular hydrogen bond, which transfers a proton from the hydroxy group to the amino nitrogen, would make a tentative zwitterionic form of the molecule. Then, electrostatic attraction between the charges in the zwitterion centers induced a weak intramolecular hydrogen bond.  相似文献   

16.
The two structurally related Schiff bases, 2-hydroxynaphthylidene-(8-aminoquinoline) (HNAQ) and 2-hydroxynaphthylidene-1(')-naphthylamine (HNAN), were studied by means of steady-state and time resolved optical spectroscopies as well as time-dependent density functional theory (TDDFT) calculations. The first one, HNAQ, is stable as a keto tautomer in the ground state and in the excited state in solutions, therefore it was used as a model of a keto tautomer of HNAN which exists mainly in its enol form in the ground state at room temperature. Excited state intramolecular proton transfer in the HNAN molecule leads to a very weak (quantum yield of the order of 10(-4)) strongly Stokes-shifted fluorescence. The characteristic time of the proton transfer (about 30 fs) was estimated from femtosecond transient absorption data supported by global analysis and deconvolution techniques. Approximately 35% of excited molecules create a photochromic form whose lifetime was beyond the time window of the experiment (2 ns). The remaining ones reach the relaxed S(1) state (of a lifetime of approximately 4 ps), whose emission is present in the decay associated difference spectra. Some evidence for the back proton transfer from the ground state of the keto form with the characteristic time of approximately 13 ps was also found. The energies and orbital characteristics of main electronic transitions in both molecules calculated by TDDFT method are also discussed.  相似文献   

17.
金属丝桃蒽酮结构变化的理论研究   总被引:1,自引:0,他引:1  
张红雨 《化学学报》1999,57(7):667-671
用MMX和AM1方法对金属桃蒽酮(HYP)结构变化过程的生成热进行了计算.发现:1.HYP1,2位OH可越过20kJ/mol左右的势,绕C--O键旋转而形成分子内氢键,并估算出键能约为10kJ/mol;2.HYP其他四个OH也可进行类似的构象变化,势垒在26kJ/mol左右,相应分子内氢键键能约为20kJmol;3.HYP分子内氢传递产生的异构体在能量上不稳定,进而在基础上探讨了1,2位OH分子内氢键的形成对HYP光敏活性的影响。  相似文献   

18.
We present a novel series of hydrogen-bonded, polycrystalline 1:1 complexes of Schiff base models of the cofactor pyridoxal-5'-phosphate (PLP) with carboxylic acids that mimic the cofactor in a variety of enzyme active sites. These systems contain an intramolecular OHN hydrogen bond characterized by a fast proton tautomerism as well as a strong intermolecular OHN hydrogen bond between the pyridine ring of the cofactor and the carboxylic acid. In particular, the aldenamine and aldimine Schiff bases N-(pyridoxylidene)tolylamine and N-(pyridoxylidene)methylamine, as well as their adducts, were synthesized and studied using 15N CP and 1H NMR techniques under static and/or MAS conditions. The geometries of the hydrogen bonds were obtained from X-ray structures, 1H and 15N chemical shift correlations, secondary H/D isotope effects on the 15N chemical shifts, or directly by measuring the dipolar 2H-15N couplings of static samples of the deuterated compounds. An interesting coupling of the two "functional" OHN hydrogen bonds was observed. When the Schiff base nitrogen atoms of the adducts carry an aliphatic substituent such as in the internal and external aldimines of PLP in the enzymatic environment, protonation of the ring nitrogen shifts the proton in the intramolecular OHN hydrogen bond from the oxygen to the Schiff base nitrogen. This effect, which increases the positive charge on the nitrogen atom, has been discussed as a prerequisite for cofactor activity. This coupled proton transfer does not occur if the Schiff base nitrogen atom carries an aromatic substituent.  相似文献   

19.
In this work, density functional theory (DFT) and time‐dependent density functional theory (TDDFT) methods are used to explore the excited‐state intramolecular proton transfer (ESIPT) mechanism of a novel system 4′‐dimethylaminoflavonol (DAF). By analyzing the molecular electrostatic potential (MEP) surface, we verify that the intramolecular hydrogen bond in DAF exists in both the S0 and S1 states. We calculate the absorption and emission spectra of DAF in two solvents, which reproduce the experimental results. By comparing the bond lengths, bond angles, and relative infrared (IR) vibrational spectra involved in the hydrogen bonding of DAF, we confirm the hydrogen‐bond strengthening in the S1 state. For further exploring the photoexcitation, we use frontier molecular orbitals to analyze the charge redistribution properties, which indicate that the charge transfer in the hydrogen‐bond moiety may be facilitating the ESIPT process. The constructed potential energy curves in acetonitrile and methylcyclohexane solvents with shortened hydrogen bond distances demonstrate that proton transfer is more likely to occur in the S1 state due to the lower potential barrier. Comparing the results in the two solvents, we find that aprotic polar and nonpolar solvents seem to play similar roles. This work not only clarifies the excited‐state behaviors of the DAF system but also successfully explains its spectral characteristics.  相似文献   

20.
Potential energy surfaces (PES) for the ground and excited state intramolecular proton transfer (ESIPT) processes in 5-hydroxy-flavone (5HF) were studied using DFT-B3LYP/6-31G(d) and TD-DFT/6-31G(d) level of theory, respectively. Our calculations suggest the non-viability of ground state intramolecular proton transfer (GSIPT) in 5HF. Excited states PES calculations support the existence of ESIPT process in 5HF. ESIPT in 5HF has been explained in terms of HOMO, LUMO electron density of the enol and keto tautomer of 5HF. PES scan by phenyl group rotation suggests that the twisted form, i.e., phenyl group rotated by 18.7° out of benzo-γ-pyrone ring plane is the most stable conformer of 5HF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号