首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substrate analogues for isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), where the C3 methyl groups were replaced by chlorine, were synthesized and evaluated as substrates for avian farnesyl diphosphate synthase (FPPase). The IPP analogue (3-ClIPP) was a cosubstrate when incubated with dimethylallyl diphosphate (DMAPP) or geranyl diphosphate (GPP) to give the corresponding chlorinated analogues of geranyl diphosphate (3-ClGPP) and farnesyl diphosphate (3-ClFPP), respectively. No products were detected in incubations of 3-ClIPP with 3-ClDMAPP. Incubation of IPP with 3-ClDMAPP gave 11-ClFPP as the sole product. Values of K(M)(3-ClIPP) (with DMAPP) and K(M)(3-ClDMAPP) (with IPP) were similar to those for IPP and DMAPP; however, values of k(cat) for both analogues were substantially lower. These results are consistent with a dissociative electrophilic alkylation mechanism where the rate-limiting step changes from heterolytic cleavage of the carbon-oxygen bond in the allylic substrate to alkylation of the double bond of the homoallylic substrate.  相似文献   

2.
Bisphosphonates, known for their effectiveness in the treatment of osteoporosis, inhibit bone resorption via mechanisms that involve binding to bone mineral and cellular effects on osteoclasts. The major molecular target of nitrogen-containing bisphosphonates (N-BPs) in osteoclasts is farnesyl diphosphate synthase (FPPS). N-BPs likely inhibit this enzyme by mimicking one or more of the natural isoprenoid lipid substrates (GPP/DMAPP and IPP) but the mode of inhibition is not established. The active site of FPPS comprises a subsite for each substrate. Kinetic studies with recombinant human FPPS indicate that both potent (risedronate) and weak (NE-58051) enzyme inhibitors compete with GPP for binding to FPPS, however, binding to this site does not completely explain the difference in potency of the two inhibitors, suggesting that a second binding site may also be a target of bisphosphonate inhibition. Using the docking software suite Autodock, we explored a dual inhibitor binding mode for recombinant human FPPS. Experimental support for dual binding is suggested by Dixon plots for the inhibitors. N-BPs may inhibit by binding to both the GPP and a second site with differences in potency at least partly arising from inhibition at the second site.  相似文献   

3.
Thiolo thiophosphate analogues of isopentenyl diphosphate (IPP), dimethylallyl diphosphate (DMAPP), geranyl diphosphate (GPP), farnesyl diphosphate (FPP), and geranylgeranyl diphosphate (GGPP) were synthesized. Inorganic thiopyrophosphate (SPP(i)) was prepared from trimethyl phosphate in four steps. The tris(tetra-n-butylammonium) salt was then used to convert isopentenyl tosylate to (S)-isopentenyl thiodiphosphate (ISPP). (S)-Dimethylallyl (DMASPP), (S)-geranyl (GSPP), (S)-farnesyl (FSPP), and (S)-geranylgeranyl thiodiphosphate (GGSPP) were prepared from the corresponding bromides in a similar manner. ISPP and GSPP were substrates for avian farnesyl diphosphate synthase (FPPase). Incubation of the enzyme with ISPP and GPP gave FSPP, whereas incubation with IPP and GSPP gave FPP. GSPP was a substantially less reactive than GPP in the chain elongation reaction and was an excellent competitive inhibitor, K(I)(GSPP) = 24.8 microM, of the enzyme. Thus, when ISPP and DMAPP were incubated with FPPase, GSPP accumulated and was only slowly converted to FSPP.  相似文献   

4.
Xiao Y  Chang WC  Liu HW  Liu P 《Organic letters》2011,13(21):5912-5915
IspH, a [4Fe-4S]-cluster-containing enzyme, catalyzes the reductive dehydroxylation of 4-hydroxy-3-methyl-butenyl diphosphate (HMBPP) to isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) in the methylerythritol phosphate pathway. Studies of IspH using fluoro-substituted substrate analogues to dissect the contributions of several factors to IspH catalysis, including the coordination of the HMBPP C(4)-OH group to the iron-sulfur cluster, the H-bonding network in the active site, and the electronic properties of the substrates, are reported.  相似文献   

5.
IspH in the deoxyxylulose phosphate (DXP) pathway catalyzes the reductive dehydration of (E)-4-hydroxy-3-methyl-2-butenyl diphosphate (HMBPP) to isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP), which are the starting materials for the synthesis of thousands of isoprenoids. Several models have been proposed in the literature to account for this unique transformation, and most of them involve the formation of an allylic radical intermediate. To facilitate trapping and characterizing the proposed intermediates in the IspH-catalyzed reactions, in the present work, we report the synthesis of four isotopically labeled IspH substrate analogues. These isotopically labeled mechanistic probes will be utilized in the future for characterizing the proposed IspH reaction intermediates by the combination of bioorganic and biophysical approaches.  相似文献   

6.
[reaction: see text] Type II isopentenyl diphosphate:dimethylallyl diphosphate (IPP:DMAPP) isomerase from Synechocystis PCC 6803 catalyzes the interconversion of IPP and DMAPP. Upon incubation of the enzyme with IPP or DMAPP in 2H2O, one deuterium is incorporated into the C2 methylene of IPP, two deuteriums are incorporated at C4, and three deuteriums are incorporated into the (E)-methyl of DMAPP.  相似文献   

7.
Farnesyl diphosphate (FPP) synthase catalyzes the consecutive head-to-tail condensations of isopentenyl diphosphate (IPP, C5) with dimethylallyl diphosphate (DMAPP, C5) and geranyl diphosphate (GPP, C10) to give (E,E)-FPP (C15). The enzyme belongs to a genetically distinct family of chain elongation enzymes that install E-double bonds during each addition of a five-carbon isoprene unit. Analysis of the C10 and C15 products from incubations with avian FPP synthase reveals that small amounts of neryl diphosphate (Z-C10) and (Z,E)-FPP are formed along with the E-isomers during the C5 --> C10 and C10 --> C15 reactions. Similar results were obtained for FPP synthase from Escherichia coli, Artemisia tridentata (sage brush), Pyrococcus furiosus, and Methanobacter thermautotrophicus and for GPP and FPP synthesized in vivo by E. coli FPP synthase. When (R)-[2-2H]IPP was a substrate for chain elongation, no deuterium was found in the chain elongation products. In contrast, the deuterium in (S)-[2-2H]IPP was incorporated into all of the products. Thus, the pro-R hydrogen at C2 of IPP is lost when the E- and Z-double bond isomers are formed. The synthesis of Z-double bond isomers by FPP synthase during chain elongation is unexpected for a highly evolved enzyme and probably reflects a compromise between optimizing double bond stereoselectivity and the need to exclude DMAPP from the IPP binding site.  相似文献   

8.
Isopentenyl diphosphate isomerase (IDI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). This is an essential step in the mevalonate entry into the isoprenoid biosynthetic pathway. The isomerization catalyzed by type I IDI involves protonation of the carbon-carbon double bond in IPP or DMAPP to form a tertiary carbocation, followed by deprotonation. Diene analogues for DMAPP (E-2-OPP and Z-2-OPP) and IPP (4-OPP) were synthesized and found to be potent active-site-directed irreversible inhibitors of the enzyme. X-ray analysis of the E.I complex between Escherichia coli IDI and 4-OPP reveals the presence of two isomers that differ in the stereochemistry of the newly formed C3-C4 double bond in the hydrocarbon chain of the inhibitor. In both adducts C5 of the inhibitor is joined to the sulfur of C67. In these structures the methyl group formed upon protonation of the diene moiety in 4-OPP is located near E116, implicating that residue in the protonation step.  相似文献   

9.
Isopentenyl diphosphate isomerase (IDI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the basic building blocks of isoprenoid molecules. Two structurally unrelated classes of IDI are known. Type I IPP isomerase (IDI-1) utilizes a divalent metal in a protonation-deprotonation reaction; whereas, the type II enzyme (IDI-2) requires reduced flavin. Epoxy, diene, and fluorinated substrate analogues, irreversible inhibitors of IDI-1, were analyzed as mechanistic probes for IDI-2. 3,4-Oxido-3-methyl-1-butyl diphosphate (eIPP), 3-methylene-4-penten-1-yl diphosphate (vIPP), and 3-(fluoromethyl)-3-buten-1-yl diphosphate (fmIPP) inactivate IDI-2 through formation of covalent adducts with the reduced flavin. UV-visible spectra of the inactivated complexes are consistent with modification of the isoalloxazine ring at position N5. vIPP and fmIPP are also alternate substrates with isomerization competing with alkylation of the flavin cofactor. (Z)-3-(Fluoromethyl)-2-buten-1-yl diphosphate ((Z)-fmDMAPP) and (Z)-3-(difluoromethyl)-2-buten-1-yl diphosphate ((Z)-dfmDMAPP) are alternate substrates, which are isomerized to the corresponding IPP derivatives. The rates of isomerization of fmIPP and (Z)-fmDMAPP are approximately 50-fold less than IPP and DMAPP, respectively. dfmIPP is not an irreversible inhibitor. These studies indicate that the irreversible inhibitors inactivate the reduced flavin required for catalysis by electrophilic alkylation and are consistent with a protonation-deprotonation mechanism for the isomerization catalyzed by IDI-2.  相似文献   

10.
We report the results of a comparative molecular field analysis and comparative molecular similarity index analysis of the human farnesyl pyrophosphate synthase (FPPS) inhibition by nitrogen bisphosphonates (NBPs) taking into account their time-dependent inhibition efficacies. The 3D-QSAR models obtained provide steric, electrostatic and hydrophobic contour maps consistent with the interactions into the active site of human FPPS observed in available crystallographic structures. Furthermore, the 3D-QSAR models obtained provide accurately IC50 values of the NBPs of the training set. The predictive ability of these 3D-QSAR models was found to rely on the choice of biologically active conformations of the target molecules and on a careful examination of the protonation status of the NBPs in the training set. The best models obtained can be useful to predict biological values of a high number of NBPs that have been used for the treatment of different diseases as potential inhibitors of the activity of the FPPS enzyme.  相似文献   

11.
We report the first X‐ray structure of the unique “head‐to‐middle” monoterpene synthase, lavandulyl diphosphate synthase (LPPS). LPPS catalyzes the condensation of two molecules of dimethylallyl diphosphate (DMAPP) to form lavandulyl diphosphate, a precursor to the fragrance lavandulol. The structure is similar to that of the bacterial cis‐prenyl synthase, undecaprenyl diphosphate synthase (UPPS), and contains an allylic site (S1) in which DMAPP ionizes and a second site (S2) which houses the DMAPP nucleophile. Both S‐thiolo‐dimethylallyl diphosphate and S‐thiolo‐isopentenyl diphosphate bind intact to S2, but are cleaved to (thio)diphosphate, in S1. His78 (Asn in UPPS) is essential for catalysis and is proposed to facilitate diphosphate release in S1, while the P1 phosphate in S2 abstracts a proton from the lavandulyl carbocation to form the LPP product. The results are of interest since they provide the first structure and structure‐based mechanism of this unusual prenyl synthase.  相似文献   

12.
Isopentenyl diphosphate isomerase (IDI) catalyzes the essential conversion of isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) in the mevalonate entry into the isoprenoid biosynthetic pathway. Two convergently evolved forms of IDI are known. Type I IDI, which is found in Eukarya and many Bacteria, catalyzes the isomerization of IPP and DMAPP by a protonation-deprotonation mechanism. The enzyme requires two divalent metal ions for activity. An X-ray structure of type I IDI from crystals soaked with (N,N-dimethylamino)-1-ethyl diphosphate (NIPP), a potent transition-state analogue for the carbocationic intermediate in the isomerization reaction, shows one of the metals in a His(3)Glu(2) hexacoordinate binding site, while the other forms a bridge between the diphosphate moiety of the substrate and the enzyme (Wouters, J.; et al. J. Biol. Chem. 2003, 278, 11903). Reconstitution of metal-free recombinant Escherichia coli type I IDI with several divalent metals-Mg(2+), Mn(2+), Zn(2+), Co(2+), Ni(2+), and Cd(2+)-generated active enzyme. Freshly purified IDI contained substoichiometric levels of a single metal ion, presumably bound in the hexacoordinate site. When NIPP was added to the disruption and purification buffers of enzyme, the purified protein contained 0.72 equiv of Mg(2+), 0.92 equiv of Zn(2+), and 0.10 equiv of Mn(2+). These results are consistent with a structure in which Mg(2+) facilitates diphosphate binding and Zn(2+) or Mn(2+) occupies the hexacoordinate site.  相似文献   

13.
We report the three‐dimensional structure of cyclolavandulyl diphosphate (CLPP) synthase (CLDS), which consecutively catalyzes the condensation of two molecules of dimethylallyl diphosphate (DMAPP) followed by cyclization to form a cyclic monoterpene, CLPP. The structures of apo‐CLDS and CLDS in complex with Tris, pyrophosphate, and Mg2+ ion were refined at 2.00 Å resolution and 1.73 Å resolution, respectively. CLDS adopts a typical fold for cis‐prenyl synthases and forms a homo‐dimeric structure. An in vitro reaction using a regiospecifically 2H‐substituted DMAPP substrate revealed the intramolecular proton transfer mechanism of the CLDS reaction. The CLDS structure and structure‐based mutagenesis provide mechanistic insights into this unprecedented terpene synthase. The combination of structural and mechanistic insights advances the knowledge of intricate terpene synthase‐catalyzed reactions.  相似文献   

14.
Diversity of the biosynthesis of the isoprene units   总被引:1,自引:0,他引:1  
This review covers the biosynthesis of the starter units of terpenoids, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) via the nonmevalonate pathway together with a new enzyme involved in the conversion of IPP and DMAPP, i.e type 2 IPP isomerase. The biosynthesis of terpenoids produced by actinomycetes is also reviewed. 117 references are cited.  相似文献   

15.
Isopentenyl diphosphate (IPP) isomerase catalyzes the interconversion of IPP and dimethylallyl diphosphate (DMAPP). This is an essential reaction in the mevalonate pathway for biosynthesis of isoprenoid compounds. A crystal structure of Escherichia coli type I IPP isomerase shows a his3glu2 octahedral metal binding site (Durbecq, V. et al. EMBO, 2001, 20, 1530-1537). A metal ion analysis of recombinant E. coli type I IPP isomerase purified from metal-free buffer or buffer containing 10 muM ZnCl2 and 10 muM MnCl2 indicated that the protein contained one atom of Zn2+ per molecule. The metal content and the activity of the enzyme did not change when dialyzed for 6 h against metal-free buffer but rapidly decreased upon dialysis against buffer containing o-phenanthroline. Structural and catalytic roles for Zn2+ are discussed.  相似文献   

16.
Five analogs of dimethylallyl diphosphate (DMAPP) with additional or shifted Me groups were converted with isopentenyl diphosphate (IPP) and the fungal variediene synthase from Aspergillus brasiliensis (AbVS). These enzymatic reactions resulted in the formation of several new terpene analogs that were isolated and structurally characterised by NMR spectroscopy. Several DMAPP analogs showed a changed reactivity giving access to compounds with unusual skeletons. Their formation is mechanistically rationalised and the absolute configurations of all obtained compounds were determined through a stereoselective deuteration strategy, revealing absolute configurations that are analogous to that of the natural enzyme product variediene.  相似文献   

17.
Di‐ and sesterterpene synthases produce C20 and C25 isoprenoid scaffolds from geranylgeranyl pyrophosphate (GGPP) and geranylfarnesyl pyrophosphate (GFPP), respectively. By genome mining of the fungus Emericella variecolor, we identified a multitasking chimeric terpene synthase, EvVS, which has terpene cyclase (TC) and prenyltransferase (PT) domains. Heterologous gene expression in Aspergillus oryzae led to the isolation of variediene ( 1 ), a novel tricyclic diterpene hydrocarbon. Intriguingly, in vitro reaction with the enzyme afforded the new macrocyclic sesterterpene 2 as a minor product from dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP). The TC domain thus produces the diterpene 1 and the sesterterpene 2 from GGPP and GFPP, respectively. Notably, a domain swap of the PT domain of EvVS with that of another chimeric sesterterpene synthase, EvSS, successfully resulted in the production of 2 in vivo as well. Cyclization mechanisms for the production of these two compounds are proposed.  相似文献   

18.
Biosynthesis of the universal terpenoid precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), from three acetyl CoA moieties through mevalonate was studied extensively in the 1950s. For several decades, the mevalonate paradigm reigned supreme and a mevalonate origin was attributed to a growing number of natural products, in many cases erroneously. Besides this biosynthetic pathway, the existence of a second one leading to IPP and DMAPP through 1-deoxy-D-xylulose 5-phosphate and 2C-methyl-D-erythritol 4-phosphate was discovered more recently in plants and some eubacteria. This pathway is widely distributed in the bacterial kingdom including major human pathogens, such as Mycobacterium tuberculosis or Helicobacter pylori and is also essential in the malaria vector Plasmodium falciparum. During the last few years, the genes, enzymes, intermediates and mechanisms of the biosynthetic route have been elucidated by a combination of methods including comparative genomics, enzymology, advanced NMR technology and crystallography. The present crystallographic review of enzymes involved in isoprenoid biosynthesis will be useful for understanding the various catalytic mechanisms and could potentially help for structure-based drug design.  相似文献   

19.
The selectivity of substrate in substrate–enzyme complexation of heptaprenyl diphosphate synthase was directly investigated using colloidal probe atomic force microscopy (AFM). This enzyme is composed of two dissociable subunits, which exhibits a catalytic activity only when they are associated together in the presence of a cofactor, Mg2+, and a substrate, farnesyl diphosphate (FPP). We have recently succeeded to directly demonstrate a specific interaction involved in this enzyme reaction and obtain new insights into the molecular mechanism of the reaction using the approach based on the colloidal probe AFM. The AFM measurement showed the adhesive force between the subunits only in the presence of both Mg2+ and FPP. In this study, we studied the substrate selectivity in the complexation by monitoring the adhesive force. The substrates studied are pyrophosphate (PPi), isopentenyl diphosphate (IPP), geranyl diphosphate (GPP), farnesyl monophosphate (FP), and farnesyl geranyl diphosphate (FGPP). No adhesion was observed in the case of PPi, IPP, and GPP. On the other hand, the significant adhesion was observed for phosphate derivatives, which bear prenyl units longer than three. This is in good agreement with the selectivity of the substrates by this enzyme, which catalyzes the condensation reaction of four IPP molecules with FPP to give heptaprenyl (C35) diphosphates. Our study showed a useful methodology for examining the elemental processes of biological reactions.  相似文献   

20.
Isopentenyl diphosphate isomerase (IDI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). These two molecules are the building blocks for construction of isoprenoid carbon skeletons in nature. Two structurally unrelated forms of IDI are known. A variety of studies support a proton addition/proton elimination mechanism for both enzymes. During studies with Thermus thermophilus IDI-2, we discovered that the olefinic hydrogens of a vinyl thiomethyl analogue of isopentenyl diphosphate exchanged with solvent when the enzyme was incubated with D(2)O without concomitant isomerization of the double bond. These results suggest that the enzyme-catalyzed isomerization reaction is not concerted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号