首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
许金 《化学学报》1989,47(4):313-318
本文在总离子强度I=1.00mol.dm^-^3、[Cu^2^+]>>[H2A]、[H^+]>>[H2A]、无氧及无缓冲剂存在的条件下, 研究Cu(II)氧化抗坏血酸(H2A)的动力学和机理. 发现Cu(II)与H2A不发生配位反应, 但以Cl^-存在的情况下, 确有Cu(II)的H2A配合物生成, Cu(II)氧化H2A反应的速率方程为r={a+b[Cl^-]}[Cu^2^+]{[H+]+Ka}^-^2, 25℃时a和b值分别为4.08×10^-^4s^-^1和0.555dm^3.s^-^1.mol^-^1. Cu(II)氧化H2A反应的表观活化能为68.1KJ.mol^-^1. 根据动力学结果, 提出了反应机理, 并给出了配合物ClCuHA的结构形式.  相似文献   

2.
Neutral dimeric metallocyclic complexes of type [M(2)(L(1))(2)B(n)] (where M = cobalt(II), nickel(II) and zinc(II), L(1) is the doubly deprotonated form of a 1,3-aryl linked bis-beta-diketone ligand of type 1,3-bis(RC(O)CH(2)C(O))C(6)H(4) (R=Me, n-Pr, t-Bu) and B is pyridine (Py) or 4-ethylpyridine (EtPy)) have been synthesised, adding to similar complexes already reported for copper(II). New lipophilic ligand derivatives with R = octyl or nonyl were also prepared for use in solvent extraction experiments. Structural, electrochemical and solvent extraction investigations of selected metal complex systems from the above series are reported, with the X-ray structures of [Co(2)(L(1))(2)(Py)(4)] x 2.25CHCl(3) x 0.5H(2)O (R=Pr), [Co(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Ni(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Zn(2)(L(1))(2)(EtPy)(2)] (R=Me) and [Zn(2)(L(1))(2)(EtPy)(4)] (R=t-Bu) being presented. The electrochemistry of H(2)L(1) (R=t-Bu) and of [Fe(2)(L(1))(3)], [Co(2)(L(1))(2)(Py)(4)], [Ni(2)(L(1))(2)(Py)(4)], [Cu(2)(L(1))(2)] and [Zn(2)(L(1))(2)(Py)(2)] has been examined. Oxidative processes for the complexes are dominantly irreversible, but several examples of quasireversible behaviour were observed and support the assignment of an anodic process, seen between +1.0 and +1.6 V, as a metal-centred oxidation. The reduction processes for the respective metal complexes are not simple, and irreversible in most cases. Solvent extraction studies (water/chloroform) involving variable concentrations of metal, bis-beta-diketone and heterocyclic base have been performed for cobalt(II) and zinc(II) using a radiotracer technique to probe the stoichiometries of the extracted species in each case. Synergism was observed when 4-ethylpyridine was added to the bis-beta-diketone ligand in the chloroform phase. Competitive extraction studies show a clear uptake preference for copper(II) over cobalt(II), nickel(II), zinc(II) and cadmium(II).  相似文献   

3.
软配位原子效应在锌和镉分离中的应用   总被引:1,自引:0,他引:1  
研究了锌和镉在二(1,1,3,3-四甲基丁基)膦酸(HMBP)及二(1,1,3,3-四甲基丁基)巯基膦酸(HMTP)/环己烷-硝酸体系中的萃取行为。以软配位原子-硫取代HMBP分子中的羟基氧原子而得到的HMTP对镉具有良好的选择性,以HMTP为萃取剂,仅一次萃取可以实现锌和镉的定量分离。  相似文献   

4.
A system for separation of zinc traces from large amounts of cadmium is proposed in this paper. It is based on the solid-phase extraction of the zinc in the form of thiocyanate complexes by the polyurethane foam. The following parameters were studied: effect of pH and of the thiocyanate concentration on the zinc extraction, shaking time required for quantitative extraction, amount of PU foam necessary for complete extraction, conditions for the separation of zinc from cadmium, influence of other cations and anions on the zinc sorption by PU foam, and required conditions for back extraction of zinc from the PU foam. The results show that zinc traces can be separated from large amounts of cadmium at pH 3.0±0.50, with the range of thiocyanate concentration from 0.15 to 0.20 mol l−1, and the shaking time of 5 min. The back extraction of zinc can be done by shaking it with water for 10 min. Calcium, barium, strontium, magnesium, aluminum, nickel and iron(II) are efficiently separated. Iron(III), copper(II) and cobalt(II) are extracted simultaneously with zinc, but the iron reduction with ascorbic acid and the use of citrate to mask copper(II) and cobalt(II) increase the selectivity of the zinc extraction. The anions nitrate, chloride, sulfate, acetate, thiosulphate, tartarate, oxalate, fluoride, citrate, and carbonate do not affect the zinc extraction. Phosphate and EDTA must be absent. The method proposed was applied to determine zinc in cadmium salts using 4-(2-pyridylazo)-resorcinol (PAR) as a spectrophotometric reagent. The result achieved did not show significant difference in the accuracy and precision (95% confidence level) with those obtained by ICP–AES analysis.  相似文献   

5.
Oshite S  Furukawa M  Igarashi S 《The Analyst》2001,126(5):703-706
Twenty-one amino acids were derivatized with fluorescamine (FLA) under basic conditions (pH 9) and the extraction of the amino acid-FLA derivatives was investigated using a homogeneous liquid-liquid extraction with perfluorooctanoic acid (HPFOA) based on phase separation under strongly acidic conditions. Under the optimum concentration conditions for the reagents ([PFOA]T = 3 x 10(-3) mol dm-3, [acetone]T = 3 vol.%, [HCl]T = 1.8 mol dm-3), the concentration factor was approximately 1000-fold (i.e., 30 microliters of the sedimented liquid phase was produced from 33 ml of the homogeneous aqueous solution). The percentage extraction (E) was determined for the 21 amino acid-FLA derivatives; the value for the tryptophan (Trp)-FLA derivative was 80.9%, whereas the other derivatives were not almost extracted (E < 0.4%). The Trp-FLA derivative was selective for the extraction using the homogeneous liquid-liquid extraction method with HPFOA. After the sedimented liquid phase containing Trp-FLA has been placed on a polytetrafluoroethylene filter-paper, the fluorescence intensity was determined using a spectrofluorimeter with filter-paper as the solid-sample holder. The calibration graph of Trp was linear over the range 1.0 x 10(-8)-1.5 x 10(-6) mol dm-3. The relative standard deviation for the central value of the calibration graph was 4.5% (five determinations) and the detection limit (S/N = 3) was 8.9 x 10(-9) mol dm-3. When the proposed method was applied to the highly sensitive spectrofluorimetric determination of Trp in animalin-L syrup, the results were satisfactory.  相似文献   

6.
Uncharged complexes, formulated as trimeric metallocycles of type [M3(L(1))3(Py)6] (where M = cobalt(II), nickel(II) and zinc(II) and L(1) is the doubly deprotonated form of a 1,4-phenylene linked bis-beta-diketone ligand of type 1,4-bis(RC(O)CH2C(O))C6H4 (R = t-Bu)) have been synthesised, adding to related, previously reported complexes of these metals with L(1) (R = Ph) and copper(ii) with L(1) (R = Me, Et, Pr, t-Bu, Ph). New lipophilic ligand derivatives with R = hexyl, octyl or nonyl were also prepared for use in solvent extraction experiments. The X-ray structures of H2L(1) (R = t-Bu) and of its trinuclear (triangular) nickel(II) complex [Ni3(L(1))3(Py)6].3.5Py (R = t-Bu) are also presented. Electrochemical studies of H2L(1), [Co3(L(1))3(Py)6], [Ni3(L(1))3(Py)6], [Cu3(L(1))3], [Zn3(L(1))3(Py)6] and [Fe4(L(1))6] (all with R = t-Bu) show that oxidative processes for the complexes are predominantly irreversible, but several examples of quasireversible behaviour also occur and support the assignment of an anodic process, seen between +1.0 and +1.6 V, as involving metal-centred oxidations. The reduction behaviour for the respective metal complexes is not simple, being irreversible in most cases. Solvent extraction studies (water/chloroform) involving the systematic variation of the metal, bis-beta-diketone and heterocyclic base concentrations have been performed for cobalt(II) and zinc(II) using a radiotracer technique in order to probe the stoichiometries of the respective extracted species. Significant extraction synergism was observed when 4-ethylpyridine was also present with the bis-beta-diketone ligand in the chloroform phase. Competitive extraction studies demonstrated a clear uptake preference for copper(II) over cobalt(II), nickel(II), zinc(II) and cadmium(II).  相似文献   

7.
The reactions of zinc(II) acetate with a variety of 2-substituted benzothiazolines afforded tetrahedral mononuclear complexes with a N 2S 2 donor set, [Zn(RPhC(H) NC 6H 4 S) 2]. The obtained zinc(II) complexes can be divided into three groups based on the characteristics of the absorption spectra; Group 1 (R = 2,4,6-triMe ( 1), 2,6-diCl ( 2)) showing an intense band at 250-300 nm and a weak band at 400-450 nm, Group 2 (R = 4-Cl ( 3), H ( 4), 4-Et ( 5), 4-OMe ( 6)) showing two intense bands at 250-300 nm and a weak band at 400-450 nm, and Group 3 (R = 4-NMe 2 ( 7), 4-NEt 2 ( 8)) showing an intense band at 250-300 nm and two very intense bands at 350-450 nm. The Group 2 and Group 3 complexes exhibited a strong emission on irradiating with ultraviolet light while the Group 1 complexes were not emissive at room temperature. However, all the zinc(II) complexes were luminescent in CH 2Cl 2/toluene glass at 77 K, and their emission peak energies were found to correlate with the Hammett constant of the substituent at para position of a pendent phenyl ring in each complex. Similar reactions of cadmium(II) acetate with 2-substituted benzothiazolines were also carried out to synthesize corresponding cadmium(II) complexes. While [Cd(RPhC(H) NC 6H 4 S) 2] (R = 2,4,6-triMe ( 9)) with bulky substituents at ortho positions of a pendent phenyl ring had a tetrahedral mononuclear structure, other cadmium(II) complexes [Cd 2(RPhC(H) NC 6H 4 S) 4] (R = 4-Et ( 10), 4-OMe ( 11), 4-NMe 2 ( 12)) possessed S-bridged dinuclear structures. These cadmium(II) complexes, which are assumed to have a mononuclear structure in solution, showed photophysical properties similar to those of the corresponding zinc(II) complexes.  相似文献   

8.
9.
The effect of temperature and pressure on the water exchange reaction of [Fe(II)(NTA)(H2O)2](-) and [Fe(II)(BADA)(H2O)2](-) (NTA = nitrilotriacetate; BADA = beta-alanindiacetate) was studied by 17O NMR spectroscopy. The [Fe(II)(NTA)(H2O)2](-) complex showed a water exchange rate constant, k(ex), of (3.1 +/- 0.4) x 10(6) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH( not equal), DeltaS( not equal) and DeltaV( not equal) for the observed reaction are 43.4 +/- 2.6 kJ mol(-1), + 25 +/- 9 J K(-1) mol(-1) and + 13.2 +/- 0.6 cm(3) mol(-1), respectively. For [Fe(II)(BADA)(H2O)2](-), the water exchange reaction is faster than for the [Fe(II)(NTA)(H2O)2](-) complex with k(ex) = (7.4 +/- 0.4) x 10(6) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH( not equal), DeltaS( not equal) and DeltaV( not equal) for the water exchange reaction are 40.3 +/- 2.5 kJ mol(-1), + 22 +/- 9 J K(-1) mol(-1) and + 13.3 +/- 0.8 cm(3) mol(-1), respectively. The effect of pressure on the exchange rate constant is large and very similar for both systems, and the numerical values for DeltaV( not equal) suggest in both cases a limiting dissociative (D) mechanism for the water exchange process.  相似文献   

10.
Liquid-liquid extraction of Co(II) and Zn(II) by methylisobutylcetone (MIBK) has been studied systematically from NH(4)SCN/H(2)SO(4) media. The influence of sulphuric acid concentration on the percentage of extraction of Co(II) and Zn(II) has been discussed. It is shown that sulphuric acid concentration has not the same effect on distribution curves of Co(II) and Zn(II). Thus, it is possible to have a separation of Zn(II) of Co(II) when [NH(4)SCN] is 0.5 mol l(-1) and [H(2)SO(4)] is about 2 mol l(-1). Under these conditions the separation factor (S(Zn/Co)) is around 580. The results are treated in terms of thermodynamic activities in aqueous phase, to determine the composition of the extracted complexes (M:SCN(-)) and to discuss the extraction mechanism.  相似文献   

11.
It has been confirmed from circular dichroism (CD) spectral changes of aqueous solutions of deltaLLL-fac(S)-[Co(L-cys-N,S)3]3- that the absolute configurational inversion to the ALLL isomer is remarkably accelerated by zinc(II), while it is retarded by cadmium(II). In the diluted solutions of these metal ions containing excess deltaLLL-fac(S)-[Co(L-cys-N,S)3]3-, the observed inversion rate constant linearly depends on the zinc(II) concentration with an intercept, while it is not affected by the cadmium(II) concentration. The kinetic behavior has been explained by difference between zinc(II)- and cadmium(II)-interactions with lone pairs on sulfur donor atoms of fac(S)-[Co(L-cys-N,S)3]3-. It has also been proposed that concentrations of zinc(II) and cadmium(II) can be simultaneously determined by the kinetic measurements.  相似文献   

12.
Neutral zinc, cadmium, mercury(II), and ethylmercury(II) complexes of a series of phosphinothiol ligands, PhnP(C6H3(SH-2)(R-3))3-n (n = 1, 2; R = H, SiMe3) have been synthesized and characterized by IR and NMR ((1)H, (13)C, and (31)P) spectroscopy, FAB mass spectrometry, and X-ray structural analysis. The compounds [Zn{PhP(C6H4S-2)2}] (1) and [Cd{Ph2PC6H4S-2}2] (2) have been synthesized by electrochemical oxidation of anodic metal (zinc or cadmium) in an acetonitrile solution of the appropriate ligand. The presence of pyridine in the electrolytic cell affords the mixed complexes [Zn{PhP(C6H4S-2)2}(py)] (3) and [Cd{PhP(C6H4S-2)2}(py)] (4). [Hg{Ph2PC6H4S-2}2] (5) and [Hg{Ph2PC6H3(S-2)(SiMe3-3)}2] (6) were obtained by the addition of the appropriate ligand to a solution of mercury(II) acetate in methanol in the presence of triethylamine. [EtHg{Ph2PC6H4S-2}] (7), [EtHg{Ph2P(O)C6H3(S-2)(SiMe3-3)}] (8), [{EtHg}2{PhP(C6H4S-2)2}] (9), and [{EtHg}2{PhP(C6H3(S-2)(SiMe3-3))2}] (10) were obtained by reaction of ethylmercury(II) chloride with the corresponding ligand in methanol. In addition, in the reactions of EtHgCl with Ph2PC6H4SH-2 and with the potentially tridentate ligand PhP(C6H3(SH-2)(SiMe3-3)) 2, cleavage of the Hg-C bond was observed with the formation of [Hg{Ph2PC6H4S-2}2] (5) and [Hg(EtHg) 2{PhP(O)(C6H3(S-2)(SiMe3-3))2}2] (11), respectively, and the corresponding hydrocarbon. The crystal structures of [Zn3{PhP(C6H4S-2)2}2{PhP(O)(C6H4S-2)2}] (1*), [Cd2{Ph2PC6H4S-2}3{Ph2P(O)C6H4S-2}] (2*), 3, 5, 6, [EtHg{Ph2P(O)C6H4S-2}] (7*), 8, 9, [{EtHg}2{PhP(O)(C6H3(S-2)(SiMe3-3))2}] (10*), and 11 are discussed. The molecular structures of 1, 2, 4, 7, and 10 have also been studied by means of density functional theory (DFT) calculations.  相似文献   

13.
The interaction of zinc(II), lead(II), and cadmium(II) with Glutathione (S‐L‐glutamyl‐Lcysteinylglycine) as primary ligand and zwitterionic buffers (N‐[2‐Hydroxyethyl]piperazine‐N′‐[2‐ethanesulfonic acid]) (HEPES) and (N‐Hydroxyethyl]piperazine‐N′‐[2‐hydroxy‐propanesulfonic acid]) (HEPPSO) as secondary ligands were studied by potentiometric‐pH titration in 1:1:1 ratio at 25.0 °C and I = 0.1 mol.dm?3 (KNO3). The formation constants of different normal and protonated binary and ternary complex species were calculated. Formation constants for the monohydroxy, and dihydroxy complexes for the binary systems M(II) + HEPES and M(II) + HEPPSO have been evaluated. The distribution curves for the various complex species as a function of pH were constructed.  相似文献   

14.
Hydrothermal reactions of 1,2,4-triazole with zinc and cadmium salts have yielded 10 structurally unique materials of the M(II)/trz/Xn- system, with M(II)=Zn and Cd and Xn-=F-, Cl-, Br-, I-, OH-, NO3-, and SO(4)2- (trz=1,2,4-triazolate). Of the zinc-containing phases, [Zn(trz)2] (1), [Zn2(trz)3(OH)].3H2O (3.3H2O), and [Zn2(trz)(SO4)(OH)] (4) are three-dimensional, while [Zn(trz)Br] (2) is two-dimensional. All six cadmium phases, [Cd3(trz)3F2(H2O)].2.75H2O (5.2.75H2O), [Cd2(trz)2Cl2(H2O)] (6), [Cd3(trz)3Br3] (7), [Cd2(trz)3I] (8), [Cd3(trz)5(NO3)(H2O)].H2O (9.H2O), and [Cd8(trz)4(OH)2(SO4)5(H2O)] (10), are three-dimensional. In all cases, the anionic components Xn- participate in the framework connectivity as bridging ligands. The structural diversity of these materials is reflected in the variety of coordination polyhedra displayed by the metal sites: tetrahedral; trigonal bipyramidal; octahedral. Structures 3, 5, and 7-9 exhibit two distinct polyhedral building blocks. The materials are also characterized by a range of substructural components, including trinuclear and tetranuclear clusters, adamantoid cages, chains, layers, and complex frameworks.  相似文献   

15.
The synergistic effect of Ni(II) and Co(II) on the sulfite induced autoxidation of Cu(II)/tetraglycine was investigated spectrophotometrically at 25.0 degrees C, pH = 9.0, 1 x 10(-5) mol dm(-3) < or = [S(IV)] < or = 8 x 10(-5) mol dm(-3), [Cu(II)]= 1 x 10(-3) mol dm(-3), 1 x 10(-6) mol dm(-3) < or = [Ni(II)] or [Co(II)] < or = 1 x 10(-4) mol dm(-3), [O2] approximately 2.5 x 10(-4) mol dm(-3), and 0.1 mol dm(-3) ionic strength. In the absence of added nickel(II) or cobalt(II), the kinetic traces of Cu(III)G4 formation show a large induction period (about 3 h). The addition of trace amounts of Ni(II) or Co(II) increases the reaction rate significantly and the induction period drastically decreases (less than 0.5 s). The effectiveness of Cu(III)G4 formation becomes much higher. The metal ion in the trivalent oxidation state rapidly oxidizes SO3(2-) to SO3*-, which reacts with oxygen to produce SO5*-. The strongly generated oxidants oxidize Cu(II)G4 to Cu(III).  相似文献   

16.
The protonated form [H(2)(L)](CF(3)SO(3))(2) (1) of a new redox-active bis-bidentate nitrogenous heterocyclic ligand, viz., 3,3'-dipyridin-2-yl[1,1']bi[imidazo[1,5-a]pyridinyl] (L), and its zinc(II) and cadmium(II) complexes (2 and 3) have been synthesized and characterized by single-crystal X-ray diffraction analysis. In the solid state, both 2 and 3 have triple-stranded helical structures involving ligands that experience twisting and bending to the extent needed by the stereoelectronic demand of the central metal ion. The metal centers in the zinc(II) complex [Zn(2)(L)(3)](ClO(4))(4) (2) are equivalent, each having a distorted octahedral geometry, flattened along the C(3) axis with a Zn1···Zn1# separation of 4.8655(13) ?. The cadmium complex [Cd(2)(L)(3)(H(2)O)](ClO(4))(4) (3), on the other hand, has a rare type of helical structure, showing coordination asymmetry around the metal centers with a drastically reduced Cd1···Cd2 separation of 4.070 ?. The coordination environment around Cd1 is a distorted pentagonal bipyramid involving a N(6)O donor set with the oxygen atom coming from a coordinated water, leaving the remaining metal center Cd2 with a distorted octahedral geometry. The structures of 2 and 3 also involve anion-π- and CH-π-type noncovalent interactions that play dominant roles in shaping the extended structures of these molecules in the solid state. In solution, these compounds exhibit strong fluxional behavior, making the individual ligand strands indistinguishable from one another, as revealed from their (1)H NMR spectra, which also provide indications about these molecules retaining their helical structures in solution. Electrochemically, these compounds are quite interesting, undergoing ligand-based oxidations in two successive one-electron steps at E(1/2) of ca. 0.65 and 0.90 V versus a Ag/AgCl (3 M NaCl) reference. These molecules are all efficient emitters in the red and blue regions because of ligand-based π*-π fluorescent emissions, tuned appropriately by the attached Lewis acid centers.  相似文献   

17.
The complexations of sulfasalazine (H3Suz) with some of transition metals have been investigated. Three types of complexes, [Mn(HSuz)-2(H2O)4] x 2H2O, [M(HSuz)-2(H2O)2] x xH2O (M=Hg(II), ZrO(II) and VO(II), x=4, 8 and 6, respectively) and [M(HSuz)-2(Cl)(H2O)3] x xH2O (M=Cr(III) and Y(III), x=5 and 6, respectively) were obtained and characterized by physicochemical and spectroscopic methods. The IR spectra of the complexes suggest that the H3Suz behaves as a bidentate ligand. The thermal decomposition of the complexes as well as thermodynamic parameters (DeltaE*, DeltaH*, DeltaS* and DeltaG*) were estimated using Coats-Redfern and Horowitz-Metzger equations. In vitro antimicrobial activities of the H3Suz and the complexes were tested.  相似文献   

18.
Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(II) complex (Zn2L3+) has been studied (L = alkoxide species of 1,3-bis[bis(pyridin-2-ylmethyl)amino]propan-2-ol). Potentiometric pH titration study disclosed a 1 : 1 phenyl phosphate complexation with Zn2L3+ in aqueous solution. The dissociation constant (= [Zn2L3+][PhOPO3(2-)]/[Zn2L3+-PhOPO3(2-)]) is an extremely small value of 2.5 x 10(-8) mol dm(-3) at 25 degrees C with I = 0.10 (NaNO3). The X-ray crystal analysis of the dizinc(II) complex with p-nitrophenyl phosphate showed that the phosphate dianion binds as a bridging ligand to the two zinc(II) ions.  相似文献   

19.
The kinetics of the metal exchange reactions between (5-R-phen)copper(II) (R = Me, H, Cl, and NO2) and Ni(II) was studied at 25?and ionic strength 1.0 mol dm-3 or pH 2.3-3.5. The rate of the exchange reactions was measured by a spectrophotometer. The reactions appeared to proceed through 3 different pathways which involved H+ attack and Ni attack as well as a pH- and Ni-independent dissociation of the complexes. The kinetics conforms to the following rate law: d[Ni(5-R-phen)]/dt = (kp + kH[H+] + kNi[Ni2+])[(Cu(5-R-phen)2+]. The reaction rate of the 3 pathways increased with decreasing basicity of the ligand. Some linear free energy relationships were found to exist between the reactivity of these Cu(II) complexes and the base strength of the ligand 5-R-phen. The mechanisms of the reactions are discussed.  相似文献   

20.
The dicopper(II) complex [Cu(2)(L)](4+) (L = alpha,alpha'-bis[bis[2-(1'-methyl-2'-benzimidazolyl)ethyl]amino]-m-xylene) reacts with hydrogen peroxide to give the dicopper(II)-hydroquinone complex in which the xylyl ring of the ligand has undergone a double hydroxylation reaction at ring positions 2 and 5. The dihydroxylated ligand 2,6-bis([bis[2-(3-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)benzene-1,4-diol was isolated by decomposition of the product complex. The incorporation of two oxygen atoms from H(2)O(2) into the ligand was confirmed by isotope labeling studies using H(2)(18)O(2). The pathway of the unusual double hydroxylation was investigated by preparing the two isomeric phenolic derivatives of L, namely 3,5-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (6) and 2,6-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (7), carrying the hydroxyl group in one of the two positions where L is hydroxylated. The dicopper(II) complexes prepared with the new ligands 6 and 7 and containing bridging micro-phenoxo moieties are inactive in the hydroxylation. Though, the dicopper(II) complex 3 derived from 6 and containing a protonated phenol is rapidly hydroxylated by H(2)O(2) and represents the first product formed in the hydroxylation of [Cu(2)(L)](4+). Kinetic studies performed on the reactions of [Cu(2)(L)](4+) and 3 with H(2)O(2) show that the second hydroxylation is faster than the first one at room temperature (0.13 +/- 0.05 s(-1) vs 5.0(+/-0.1) x 10(-3) s(-1)) and both are intramolecular processes. However, the two reactions exhibit different activation parameters (Delta H++ = 39.1 +/- 0.9 kJ mol(-1) and Delta S++ = -115.7 +/- 2.4 J K(-1) mol(-1) for the first hydroxylation; Delta H++ = 77.8 +/- 1.6 kJ mol(-1) and Delta S++ = -14.0 +/- 0.4 J K(-1) mol(-1) for the second hydroxylation). By studying the reaction between [Cu(2)(L)](4+) and H(2)O(2) at low temperature, we were able to characterize the intermediate eta(1):eta(1)-hydroperoxodicopper(II) adduct active in the first hydroxylation step, [Cu(2)(L)(OOH)](3+) [lambda(max) = 342 (epsilon 12,000), 444 (epsilon 1200), and 610 nm (epsilon 800 M(-1)cm(-1)); broad EPR signal in frozen solution indicative of magnetically coupled Cu(II) centers].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号