首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Zhu 《Rheologica Acta》1990,29(5):409-415
Analytical solutions are obtained for the free surface cell model of packed beds using a third order fluid. Second order perturbed results indicate a substantial increase in resistance to the flow of a viscoelastic fluid through a packed bed. This predicted increase is in good agreement with experimental findings.  相似文献   

2.
We consider Stokes' first problem for a viscoelastic fluid. The memory of the fluid is truncated to a finite time interval and discontinuities in the stress relaxation modulus or its derivatives are allowed at the point of truncation. We investigate secondary waves which are generated by the interaction of these singularities in the memory with earlier waves.Dedicated to Prof. Hanswalter Giesekus on the occasion of his retirement as Editor of Rheologica Acta.  相似文献   

3.
The time-dependent shear stress and first normal stress difference were measured for a polystyrene solution for start-up and cessation-flow experiments over a relatively wide range of shear rate. Consistency tests for the K-BKZ model were applied to the data, and it was concluded that the K-BKZ equation generally does not satisfactorily describe the start-up and cessation data. Modified consistency tests were developed using a strain-coupling constitutive equation, and the evidence suggests that most of the differences between the predictions of the K-BKZ theory and experiment can be explained by including a strain-coupling effect in the rheological constitutive equation.  相似文献   

4.
The presented procedure enables calculation of a velocity profile for the Wagner fluid in the Poiseuille flow. The velocity profile can be approximated with a prescribed accuracy, thus enabling boundary conditions for the Wagner model, that are required for numerical simulations to be defined. Convergence analysis for the procedure indicates the existence of a critical Deborah number, which limits the validity of the approximation.  相似文献   

5.
Finite difference solutions have been obtained by the perturbation method to investigate the influence of shear thinning and elasticity on the flow around an inclined circular cylinder of finite length in a uniform flow. In this numerical analysis a generalized upper-convected Maxwell model, in which the viscosity changes according to the Cross model, has been used.The local flow over the cylinder is only slightly deflected. However, in the wake flow behind the cylinder the particle path is remarkably influenced by the axial flow and rapidly flows up parallel to the cylinder's axis. Then it gradually rejoins direction of the incoming flow. It is found that viscoelastic fluids are prone to flow axially in the vicinity of the cylinder. The numerical predictions generally agree with the flow visualization results.The numerical solutions also demonstrate that elasticity has a strong effect on the velocity profile especially around both ends of the cylinder; elasticity increases the asymmetric profiles of both circumferential velocity and axial velocity with respect to equal to 90° and decreases a difference in the circumferential velocity between the windward end and the leeward end.For non-Newtonian fluids, the length of the wake flow is influenced by not only the Reynolds number but also the cylinder diameter and it is larger for the cylinder with the smaller diameter at the same Reynolds number.Partly presented at the 9th Australasian Fluid Mechanics Conference, University of Auckland, New Zealand, 8–12 December, 1986  相似文献   

6.
Superposition of oscillatory shear imposed from the boundary and through pressure gradient oscillations and simple shear is investigated. The integral fluid with fading memory shows flow enhancement effects due to the nonlinear structure. Closed-form expressions for the change in the mass transport rate are given at the lowest significant order in the perturbation algorithm. The elasticity of the liquid plays as important a role in determining the enhancement as does the shear dependent viscosity. Coupling of shear thinning and elasticity may produce sharp increases in the flow rate. The interaction of oscillatory shear components may generate a steady flow, either longitudinal or orthogonal, resulting in increases in flow rates akin to resonance, and due to frequency cancellation, even in the absence of a mean gradient. An algorithm to determine the constitutive functions of the integral fluid of order three is outlined.Nomenclature A n Rivlin-Ericksen tensor of order . - A k Non-oscillatory component of the first order linear viscoelastic oscillatory velocity field induced by the kth wave in the pressure gradient - d Half the gap between the plates - e x, e z Unit vectors in the longitudinal and orthogonal directions, respectively - G(s) Relaxation modulus - G History of the deformation - Stress response functional - I() Enhancement defined as the ratio of the frequency dependent part of the discharge to the frequencyindependent part of it at the third order - I *() Enhancement defined as the ratio of the increase in discharge due to oscillations to the total discharge without the oscillations - k Power index in the relaxation modulus G(s) - k i –1 Relaxation times in the Maxwell representation of the quadratic shear relaxation modulus (s 1, s 2) - m i –1, n i –1 Relaxation times in the Maxwell representations of the constitutive functions 1(s 1,s 2,s 3) and 4 (s 1, s 2,s 3), respectively - P Constant longitudinal pressure gradient - p Pressure field - mx ,(3) nz ,(3) Mean volume transport rates at the third order in the longitudinal and orthogonal directions, respectively - 0,(3), 1,(3) Frequency independent and dependent volume transport rates, respectively, at the third order - s = t- Difference between present and past times t and   相似文献   

7.
When viscoelastic fluids flow out from horizontal ducts many cracks and protruding ridges are formed on the jet surface. As far as the authors know, this phenomenon has not yet been reported. The occurrence of the anomalous phenomenon is not affected by inlet flow condition or duct shape.The phenomenon may be divided into three regimes, namely, a stable state, a breakage state, and a multiplication state. In the breakage state one ridge divides into two parts after its growth, and in the multiplication state a new ridge is suddenly formed at a crack point. With increasing shear rate, the flow pattern of the jet changes from the stable state to the breakage state, and then to the multiplication state.Furthermore, a recoil effect is observed. In this effect many air bubbles rush into the duct from the exit when the flow is quickly stopped.  相似文献   

8.
Starting from an analysis of the rheological behavior of the complex modulus predicted by the Cole-Cole formalism, a generalized Cole-Cole ansatz is suggested in order to overcome the related difficulties. The corresponding rheological constitutive equation with fractional derivatives belonging to the generalized Cole-Cole respondance is stated and the characteristic material functions of the linear viscoelasticity theory (like the dynamic modulus and compliance, the relaxation and ratardation functions, the spectra, etc.) are derived. Model predictions of these functions will be compared with experimental results from dynamical measurements and creep data on different polymer systems which show cooperative phenomena (polymeric glasses and gelling systems). One can see that the modified ansatz fits the data very well, in spite of its relative simplicity.  相似文献   

9.
Three-dimensional studies on bicomponent extrusion   总被引:1,自引:0,他引:1  
The present work is concerned with the mathematical modelling and numerical simulation of three-dimensional (3-D) bicomponent extrusion. The objective is to provide an understanding of the flow phenomena involved and to investigate their impact on the free surface shape and interface configuration of the extruded article. A finite element algorithm for the 3-D numerical simulation of bicomponent stratified free surface flows is described. The presence of multiple free surfaces (layer interface and external free surfaces) requires special free surface update schemes. The pressure and viscous stress discontinuity due to viscosity mismatch at the interface between the two stratified components is handled with both a double node (u–v–w–P 1 –P 2 –h 1 –h 2) formulation and a penalty function (u–v–w–P–h 1 –h 2) formulation.The experimentally observed tendency of the less viscous layer to encapsulate the more viscous layer in stratified bicomponent flows of side-by-side configuration is established with the aid of a fully 3-D analysis in agreement with experimental evidence. The direction and degree of encapsulation depend directly on the viscosity ratio of the two melts. For shear thinning melts exhibiting a viscosity crossover point, it is demonstrated that interface curvature reversal may occur if the shearing level is such that the crossover point is exceeded. Extrudate bending and distortion of the bicomponent system because of the viscosity mismatch is shown. For flows in a sheath-core configuration it is shown that the viscosity ratio may have a severe effect on the swelling ratio of the bicomponent system.Modelling of the die section showed that the boundary condition imposed at the fluid/fluid/wall contact point is critical to the accuracy of the overall solution.  相似文献   

10.
Behavior of polymer melts in biaxial as well as uniaxial elongational flow is studied based on the predictions of three constitutive models (Leonov, Giesekus, and Larson) with single relaxation mode. Transient elongational viscosities in both flows are calculated for three constitutive models, and steady-state elongational viscosities are obtained as functions of strain rates for the Giesekus and the Larson models.Change of elongational flow behavior with adjustable parameter is investigated in each model. Steady-state viscosities E and B are obtained for the Leonov model only when the strain-hardening parameter is smaller than the critical value cr determined in each flow. In this model, uniaxial elongational viscosity E increases with increasing strain rate , while biaxial elongational viscosity B decreases with increasing biaxial strain rate B . The Giesekus model predictions depend on the anisotropy parameter . E and B increase with strain rates for small B while they decrease for large . When is 0.5, E in increasing, but B is decreasing. The Larson model predicts strain-softening behavior for both flows when the chain-contraction parameter > 0.5. On the other hand, when is small, the steady-state viscosities of this model show distinct maximum around = B = 1.0 with relaxation time . The maximum is more prominent in E than in B .  相似文献   

11.
Two decoupled methods for the finite element solution of the planar stick-slip transition problem with Oldroyd-B fluids, namely the method of characteristics and the Lesaint-Raviart technique, are presented and compared. These procedures are used for the local treatment of the stress transport equation imbedded in the constitutive law and allow the approximation of stresses with discontinuous shape functions. Computations are carried out up to a Deborah number of 4 and the methods are shown to yield fairly similar results.  相似文献   

12.
By means of a cone and plate rheometer the relaxation of the shear stress and the first normal stress difference in polymer liquids upon cessation of a constant shear rate were examined. The experiments were conducted mostly in a high shear rate region of relevance for the processing of these materials. The relaxation behavior at these shear rates can only be measured accurately under extremely precise specifications of the rheometer. To determine under which conditions the integral normal thrust is a convenient measure for the relaxing local first normal stress difference the radial distribution of the pressure in the shear gap was measured. The shape of relaxation of both the shear stress and the first normal stress difference could be closely approximated for the entire measured shear rate and time range by a two parameter statistical function. In the range of measured shear rates, one of the parameters, the standard deviationS, is equal for the shear and the normal stress, and is independent of the shear rate within the limit of experimental error. The second parameter, the mean relaxation timet 50, of the shear stress andt 50, of the first normal stress difference, can be calculated approximately from the viscosity function and only a single relaxation experiment.  相似文献   

13.
14.
A novel geometry for generating a viscometric flow presents advantages of both cone and plate and parallel plate geometries, regarding uniform shear field and adjustable range of measurement. Kinematics and dynamics of the generated flow have been described mathematically utilizing an orthogonal curvilinear coordinate system based on the shapes of the shearing surfaces which are similar to the surface that generates the flow. Simple equations that allow the calculation of quantities of experimental interest in the rheological characterization of liquid materials, namely, shear rate, shear stress and two normal stress differences, have also been derived.The geometry, called pseudosphere, was tested with two types of fluids (Newtonian and pseudoplastic). Results show that the geometry can be used with low viscosity liquids (Newtonian liquids) by only adjusting the gapH. The behavior of pseudoplastic fluids for both low and moderately high viscosity could also be studied with this geometry. Very reproducible results were obtained when compared with those obtained with cone and plate geometry. Regions of lower shear rate could be studied using only the pseudosphere geometry.  相似文献   

15.
Two series of polypropylene samples of different molecular weight, the first obtained directly from polymerization reactions and the second from controlled thermal degradation, were studied by dynamic testing in the melt state. Several viscoelastic parameters were determined, and correlated with weight-average molecular weightM w . It is found that theM w -dependence of the two series is rather different.  相似文献   

16.
The paper is concerned with the squeezing flow of a model suspension fluid. The numerical solution obtained by a time-dependent Boundary Element Method is compared to an asymptotic solution at large radius. It is found that the kinematics are Newtonian in character, and the fibres quickly align themselves radially. Consequently, the squeezing force is only weakly dependent on the initial orientations of the fibres and the device can be used for measuring the effective viscosity of the suspension. The effective viscosity found from the squeezing flow agrees surprisingly well with experimental data and numerical data derived from the falling sphere geometry at low volume fractions ( < 0.1).  相似文献   

17.
Studies of the onset of instabilities were conducted on single hole and multi-hole contractions using laser speckle visualization. A well characterized elastic fluid was used with constant viscosity of 13.1 Pa · s and elasticity characterized by a longest relaxation time constant of 2.233 s. The onset of instabilities was characterized in terms of the Deborah number and the contraction ratio. Three types of instabilities were observed: pulsing vortices, azimuthally rotating vortices, and swirling vortices. For the single hole contractions the critical Deborah number for instability increased from 4.4 to 5.07 to 5.25 as the contraction ratio increased from 4: 1 to 8: 1 to 12: 1. The magnitude of the instabilities was much greater for the 4: 1 contraction than for the other two contraction ratios. For the multi-hole contraction a square array of nine holes was used and the ratio of the hole diameter to hole spacing was varied. The height of the vortices is very similar for the single hole and multi-hole contractions at low Deborah numbers. At high Deborah numbers the effect of adjacent holes is to reduce the height of the vortices by a factor of three. For the 4: 1 spacing no secondary vortex was observed below a Deborah number of De = 3.7. Secondary vortices occurred for the 8:1 and 10:1 spacing at all Deborah numbers. Unstable pulsing vortices appeared for all spacings at a critical Deborah number around 5.5. Adjacent holes decreased the strength of the unsteady vortex motions. The centerline velocities were measured for the multi-hole contraction at shear rates of 5, 30, and 300 s–1. The elongational strain rates are similar at a low shear rate of 5 s–1. As shear rate is increased the onset of stretching occurs closer to the plane of the contraction for the smaller contraction ratios.  相似文献   

18.
19.
A mathematical model was developed to describe the behavior of Herschel-Bulkley fluids in a back extrusion (annular pumping) device. A technique was also developed to determine the rheological properties (yield stress, flow behavior index, and consistency coefficient) of these fluids. Mathematical terms were expressed in four dimensionless terms, and graphical aids and tables were prepared to facilitate the handling of the expressions.Nomenclature a radius of the plunger, m - dv/dr shear rate, s–1 - F force applied to the plunger, N - F b buoyancy force, N - F cb force corrected for buoyancy, N - F T recorded force just before the plunger is stopped, N - F Te recorded force after the plunger is stopped, N - g acceleration due to gravity, m/s2 - H(t) momentary height between plunger and container bottom, m - K a/R, dimensionless - L length of annular region, m - L(t) depth of plunger penetration, m - n flow behavior index, dimensionless - p static pressure, Pa - P L pressure in excess of hydrostatic pressure at the plunger base, Pa - p 0 pressure at entrance to annulus, Pa - P pressure drop per unit of length, Pa/m - Q total volumetric flow rate through the annulus, m3/s - r radial coordinate, measured from common axis of cylinder forming annulus, m - R radius of outer cylinder of annulus, m - s reciprocal of n, dimensionless - t time, s - T dimensionless shear stress, defined in Eq. (3) - T 0 dimensionless yield stress, defined in Eq. (4) - T w dimensionless shear stress at the plunger wall - p velocity of plunger, m/s - velocity, m/s - mass density of fluid, kg/m3 - Newtonian viscosity, Pa s - P p 0 p L , Pa - consistency coefficient, Pa sn - value of where shear stress is zero - , + limits of the plug flow region (Fig. 1) - r/R - shear stress, Pa - y yield stress, Pa - w shear stress at the plunger wall, Pa - dimensionless flow rate defined in Eq. (24) - dimensionless velocity defined by Eq. (5) - , + dimensionless velocity outside the plug flow region - max dimensionless maximum velocity in the plug flow region - p dimensionless velocity at the plunger wall  相似文献   

20.
The complex viscosity of microemulsions shows relaxation processes of which the largest relaxation time is about 10–5 s or less. This time can be attributed to relaxation of stresses in the surface of emulsion droplets pertaining to interfacial tension. Superimposed on a spherical droplet surface shape fluctuations can occur due to thermal energies. Our aim is to show the influence of thermal shape fluctuations on the complex viscosity of emulsions. The method used in the derivation has also been applied to inflexible rods to demonstrate its feasibility by showing the formal rheological equivalence of in length thermally fluctuating rods and Rouse's simple model of polymers. The emulsion results have been applied to a dilution series of a non-ionic microemulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号