首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
It was established that 5-bromo-2-cyclopropylthiophene and 5-methyl-2-cyclo-propylthiophene undergo transformations during nitration with nitric acid in acetic anhydride that are a consequence of ipso attack of the nitryl cation in the 2 or 5 positions of the thiophene rings of the starting compounds.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 189–194, February, 1981.  相似文献   

2.
The mechanism of the cycloaddition reaction between singlet H2Si=Si: and formaldehyde has been investigated with the CCSD(T)//MP2/6-31G* method. From the potential energy profile, it could be predicted that the reaction has three competitive dominant reaction pathways. The reaction rules presented is that the 3p unoccupied orbital of the Si: atom in H2Si=Si: inserts the π orbital of formaldehyde from the oxygen side, resulting in the formation of an intermediate. Isomerization of the intermediate further generates a four-membered ring silylene (the H2Si–O in the opposite position). In addition, the [2+2] cycloaddition reaction of the two π-bonds in H2Si=Si: and formaldehyde also generates another four-membered ring silylene (the H2Si–O in the syn-position). Because of the unsaturated property of the Si: atom in the two four-membered ring silylenes, the two four-membered ring silylenes could further react with formaldehyde, generating two silicic bis-heterocyclic compounds. Simultaneously, the ring strain of the four-membered ring silylene (the H2Si–O in the syn-position) makes it isomerize to a twisted four-membered ring product.  相似文献   

3.
The mechanism of the cycloaddition reaction of forming a spiro-Si-heterocyclic ring compound between singlet dichloroalkylidenesilylene (Cl2C=Si:) and ethene has been investigated with CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the reaction has one dominant reaction pathway. The presented rule of this reaction is that the 3p unoccupied orbital of Si in dichloroalkylidene and the π orbital of ethene forming the π → p donor-acceptor bond, resulting in the formation of a three-membered ring intermediate. Ring-enlargement effect make the three-membered ring intermediate isomerizes to a four-membered ring silylene. Due to sp 3 hybridization of Si atom in the four-membered ring silylene, the four-membered ring silylene further combines with ethene to form a spiro-Si-heterocyclic ring compound.  相似文献   

4.
The mechanism of the cycloaddition reaction between singlet germylene silylene (H2GeSi:) and acetone has been investigated with CCSD(T)/6‐31G*//MP2/6‐31G* method. From the potential energy profile, we could predict that the reaction has two competitive dominant reaction channels. The present rule of this reaction is that the [2+2] cycloaddition reaction of the two (‐bonds in germylene silylene and acetone generates a four‐membered ring silylene with Ge. Because of the unsaturated property of Si atom in the four‐membered ring silylene with Ge, it could further react with acetone, resulting in the generation of a bis‐heterocyclic compound with Si and Ge. Simultaneously, the ring strain of the four‐membered ring silylene with Ge makes it isomerize to a twisted four‐membered ring product.  相似文献   

5.
The mechanism of the cycloaddition reaction between singlet H2Ge = Ge: and acetone has been investigated with CCSD(T)//MP2/6-31G* method. From the potential energy profile, it could be predicted that the reaction has two competitive dominant reaction pathways. The reaction rule presented is that the two reactants firstly form a four-membered Ge-heterocyclic ring germylene through the [2 + 2] cycloaddition reaction. Because of the 4p-unoccupied orbital of Ge atom in the four-membered Ge-heterocyclic ring germylene and the π-orbital of acetone forming a π → p donor–acceptor bond, the four-membered Ge-heterocyclic ring germylene further combines with acetone to form an intermediate. Because the Ge atom in intermediate happens sp3 hybridization after transition state, then, intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state. Simultaneously, the ring strain of the four-membered Ge-heterocyclic ring germylene makes it isomerize to a twisted four-membered ring product.  相似文献   

6.
The mechanism of the cycloaddition reaction between singlet state dichlorosilylene germylidene (Cl2Si=Ge:) and ethene has been investigated with CCSD(T)//MP2/6-31G* method, from the potential energy profile, we predict that the reaction has one dominant reaction pathway. The presented rule of the reaction is that the two reactants firstly form a Si-heterocyclic four-membered ring germylene through the [2+2] cycloaddition reaction. Due to the sp 3 hybridization of the Ge: atom in Si-heterocyclic four-membered ring germylene, the Si-heterocyclic four-membered ring germylene further combined with the ethene to form a bis-heterocyclic compound with Si and Ge.  相似文献   

7.
The mechanism of the cycloaddition reaction between singlet 2,2-dimethyl(2-germavinylidene) [(CH3)2Ge=C:] and formaldehyde has been investigated with CCSD(T)//MP2/6-311G** method. From the potential energy profile, it could be predicted that the reaction has two competitive dominant reaction pathways. The first pathway consist of the transfer of formaldehyde oxygen π-electrons to the 2p unoccupied orbital of the C: atom in 2,2-dimethyl(2-germavinylidene) with a formation of intermediate which then isomerizes to a four-membered heterocyclic ring carbene (Ge and O in the 1,3-position). The second pathway is a direct [2 + 2] cycloaddition reaction in which the interaction of two π-bonds in 2,2-dimethyl(2-germavinylidene) and formaldehyde generates another four-membered heterocyclic ring carbene (Ge and O in 1,2-position). Because of the unsaturated property of the C: atom in the two four-membered heterocyclic ring carbenes, the two four-membered heterocyclic ring carbenes could further react with formaldehyde, generating two spiro-heterocyclic ring compounds.  相似文献   

8.
《Tetrahedron》1987,43(21):4841-4848
On reaction of 1-aminopurinium mesitylenesulfonates with methanolec ammonia N-deamintion occurs. For 1-amino-, 1-amino-8-(methylthio)-, 1-amino-8-phenyl-, 1-amino-2-methyl-, 1-amino-6-methyl- and 1-amino-8-phenyl-9-methyl-purinium mesitylenesulfonate this reaction proceeds for at least 75% via ring opening as shown by the isolation of 1-15N-labelled purines when 15N-labelled methanolic ammonia was used. 1-Amino-9-methylpurinium mesitylenesulfonate gave N-deamination without ring opening. The reaction of 1-amino-6-(methylthio)purinium mesitylenesulfonate with methanolic ammonia involves, besides deamination, partial substitution of the methylthio group; no ring opening is involved. However, ring opening followed by substitution occurs in the reaction of 1-amino-2-(methylthio)purinium mesitylenesulfonate; the reaction proceeds via an adduct at position 2.  相似文献   

9.
The mechanism of the cycloaddition reaction between singlet silylene silylene (H2Si?Si:) and acetone has been investigated with the CCSD (T)//MP2/6‐31G?? method. According to the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction channels. The present rule of this reaction is that the [2+2] cycloaddition reaction of the two π‐bonds in silylene silylene (H2Si?Si:) and acetone leads to the formation of a four‐membered ring silylene (E3). Because of the unsaturated property of Si: atom in E3, it further reacts with acetone to form a silicic bis‐heterocyclic compound (P7). Simultaneously, the ring strain of the four‐membered ring silylene (E3) makes it isomerize to a twisted four‐membered ring product (P4).  相似文献   

10.
The molecular properties of RDX are affected by the introduction of different functional groups, and the decomposition process of these analogues is studied in this paper. DFT method is used to study the initial decomposition reaction paths of 30 high energy materials based RDX skeleton. In the nitro cleavage reaction, the energy barrier become relatively low by introducing CH(NO2)2 or  C(NO2)3 groups on the C site of the six membered ring. In the ring opening reaction, the ring opening process is easier to proceed by introducing  NH2 or  NHNH2 groups on the C site of the six membered ring.  相似文献   

11.
The mechanism of the cycloaddition reaction between singlet dimethylsilylene germylidene (Me2Si=Ge:) and ethene has been investigated with the CCSD(T)//MP2/6-31G* method. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rules presented is that the two reactants firstly form a Si-heterocyclic four-membered ring germylene through the [2+2] cycloaddition reaction. Due to the sp 3 hybridization of the Ge: atom in Si-heterocyclic four-membered ring germylene, the Si-heterocyclic four-membered ring germylene further combined with ethene to form a bis-heterocyclic product with Si and Ge (P2).  相似文献   

12.
The mechanism of the cycloaddition reaction between singlet dimethyl-silylene carbene and acetone has been investigated with density functional theory, From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The presented rule of this reaction: the [2+2] cycloaddition effect between the πorbital of dimethyl-silylene carbene and the π orbital of π-bonded compounds leads to the formation of a twisty four-membered ring intermediate and a planar four-membered ring product; The unsaturated property of C atom from carbene in the planar four-membered ring product,resulting in the generation of CH3-transfer product and silicic bis-heterocyclic compound.  相似文献   

13.
1,2,4,5-Tetrahydro-3,2-benzothiazepine 3,3-dioxides 2 , with a variety of substituents on the nitrogen atom, can be easily obtained by the title reaction. The isomeric compounds 4–6 are also formed from sulphonamides bearing an N-aralkyl group with a chain of two or more carbon atoms. Activation of the ring closure-position or deactivation of the aromatic ring in the substituent can direct the reaction to give compounds 2 . Cyclization results are influenced by the size of the new heterocycle ring and by the predominant formation of derivatives with the SO2 group outside the ring.  相似文献   

14.
The mechanism of the cycloaddition reaction between singlet dichlorosilylenesilylene (Cl2Si=Si:)→Cl2Si=Si: and aldehyde has been investigated with the CCSD(T)//MP2/6-31G* method. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rules presented is that the two reactants firstly form a four-membered ring silylene through the [2+2] cycloaddition reaction. Because of the 3p unoccupied orbital of Si: atom in the four-membered ring silylene and the π orbital of aldehyde forming a π → p donor–acceptor bond, the four-membered ring silylene further combines with aldehyde to form an intermediate. Because the Si: atom in the intermediate happens sp 3 hybridization after transition state, then the intermediate isomerizes to a spiro-heterocyclic ring compound involving Si via a transition state.  相似文献   

15.
The mechanism of the cycloaddition reaction between singlet dichlorosilylene germylidene (Cl2Si?Ge:) and formaldehyde has been investigated with the CCSD(T)//MP2/6‐31G* method. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule presented is that the two reactants first form a four‐membered Si‐heterocyclic ring germylene through the [2 + 2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge atom in the four‐membered Si‐heterocyclic ring germylene and the π orbital of formaldehyde forming a π→p donor–acceptor bond, the four‐membered Si‐heterocyclic ring germylene further combines with formaldehyde to form an intermediate. Because the Ge atom in intermediate undergoes sp3 hybridization after transition state, then, the intermediate isomerizes to a spiro‐heterocyclic ring compound involving Si and Ge via a transition state. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The recent discovery of calix[3]pyrrole, a porphyrinogen-like tripyrrolic macrocycle, has provided an unprecedented strain-induced ring expansion reaction into calix[6]pyrrole. Here, we synthesized calix[n]furan[3-n]pyrrole (n=1∼3) macrocycles to investigate the reaction scope and mechanism of the ring expansion. Single crystal X-ray analysis and theoretical calculations revealed that macrocyclic ring strain increases as the number of inner NH sites increases. While calix[1]furan[2]pyrrole exhibited almost quantitative conversion into calix[2]furan[4]pyrrole within 5 minutes, less-strained calix[2]furan[1]pyrrole and calix[3]furan were inert. However, N-methylation of calix[2]furan[1]pyrrole induced a ring-expansion reaction that enabled the isolation of a linear reaction intermediate. The mechanism analysis revealed that the ring expansion consists of regioselective ring cleavage and subsequent cyclodimerization. This reaction was further utilized for synthesis of calix[6]-type macrocycles.  相似文献   

17.
《Tetrahedron letters》1986,27(20):2315-2318
The copper-promoted reaction of β-lactams with t-butyl perbenzoate results in benzoyloxylation of the azetidin-2-one ring at the C-4 position. There is no competing reaction at the C-3 position, but reaction at exocyclic carbon α to nitrogen competes with ring substitution.  相似文献   

18.
H2Ge=Si: and its derivatives (X2Ge=Si:, X=H, Me, F, Cl, Br, Ph, Ar,…) are new species. Its cycloaddition reactions are new area for the study of silylene chemistry. The cycloaddition reaction mechanism of singlet H2Ge=Si: and formaldehyde has been investigated with the MP2/aug-cc-pVDZ method. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule is that two reactants firstly form a four-membered Ge-heterocyclic ring silylene through the [2+2] cycloaddition reaction. Because of the 3p unoccupied orbital of Si: atom in the four-membered Ge-heterocyclic ring silylene and the π orbital of formaldehyde forming a π→p donor-acceptor bond, the four-membered Ge-heterocyclic ring silylene further combines with formaldehyde to form an intermediate. Because the Si: atom in the intermediate undergoes sp3 hybridization after transition state, then the intermediate isomerizes to a spiro-Si-heterocyclic ring compound involving Ge via a transition state. The result indicates the laws of cycloaddition reaction between H2Ge=Si: or its derivatives (X2Ge=Si:, X=H, Me, F, Cl, Br, Ph, Ar,…) and asymmetric π-bonded compounds are significant for the synthesis of small-ring involving Si and Ge and spiro-Si-heterocyclic ring compounds involving Ge.  相似文献   

19.
The H2Ge=Ge:, as well as and its derivatives (X2Ge=Ge:, X=H, Me, F, Cl, Br, Ph, Ar, : : :) is a kind of new species. Its cycloaddition reactions is a new area for the study of germy-lene chemistry. The mechanism of the cycloaddition reaction between singlet Me2Ge=Ge: and acetaldehyde was investigated with the B3LYP/6-31G* method in this work. From the potential energy profile, it could be predicted that the reaction has one dominant re-action pathway. The reaction rule is that the two reactants firstly form a four-membered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Ge-heterocyclic ring germylene and the π orbital of acetaldehyde forming a π→p donor-acceptor bond, the four-membered Ge-heterocyclic ring germylene further combines with acetaldehyde to form an intermedi-ate. Because the Ge atom in intermediate happens sp3 hybridization after transition state, then, intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state. The research result indicates the laws of cycloaddition reaction between Me2Ge=Ge: and ac-etaldehyde, and lays the theory foundation of the cycloaddition reaction between H2Ge=Ge: and its derivatives (X2Ge=Ge:, X=H, Me, F, Cl, Br, Ph, Ar, : : :) and asymmetric π-bonded compounds, which are significant for the synthesis of small-ring and spiro-Ge-heterocyclic ring compounds.  相似文献   

20.
An innovative route for the synthesis of substituted dibenzofurans has been delineated through a ring transformation reaction of suitably functionalized 2H-pyran-2-ones by reaction with 7-methoxybenzofuran-3-one, in high yield. The novelty of the procedure lies in the creation of an aromatic ring from a 2H-pyran-2-one involving the -COCH2-moiety of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号