首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study discusses the synthesis of two new 2‐hydroxyethyl substituted N‐heterocyclic carbene (NHC) precursors. The NHC precursors were prepared from 1‐(alkyl/aryl)benzimidazole and alkyl halides. They were characterized using 1H NMR, 13C NMR, FT‐IR, UV–Vis spectroscopy, and elemental analysis techniques. Molecular and crystal structures of 1 and 2 were determined using the single‐crystal X‐ray diffraction method. Crystal structure of the compounds features NHC precursors and chloride anions. Additionally in 2 , the asymmetric unit has a water molecule, which forms a tetrameric chloride‐hydrate assembly with the chloride anion. The chloride anions play an important role in the stabilization of crystal structures to form a two‐dimensional supramolecular architecture. The 3D Hirshfeld surface and the associated 2D fingerprint plots were also drawn to gain insights into the behavior of the interactions in the compounds.  相似文献   

2.
A series of new carbazole‐based N‐heterocyclic carbene (NHC) ligands have been synthesized in a simple and facile synthetic route and subsequently used in a Pd/carbazole‐based NHC catalytic system, which was found to be effective in catalyzing Heck reactions to provide substituted stilbene derivatives in good yields. Several bioactive stilbenes, including pterostilbene, pinosylvin, trimethoxy resveratrol, and resveratrol, were synthesized in good yields, and a 10 mmol scale‐up was also performed for trimethoxy resveratrol. The synthetic application was also extended by performing a double‐tandem chemoselective Heck reaction followed by Miyaura borylation in a one‐pot procedure to give single‐step access to synthetically useful stilbenyl boronate esters. Similarly, a unique triple‐tandem protocol of a chemoselective Heck reaction/Miyaura borylation/Suzuki–Miyaura coupling reaction sequence was performed for the one‐pot modification of biologically relevant molecules.  相似文献   

3.
A series of unsymmetrically substituted N‐heterocyclic carbene (NHC) precursors ( 1a , 1b , 1c , 1d , 1e ) were synthesized from the reaction of N‐phenylbenzimidazole with various alkyl halides. These compounds were used to synthesize NHC–silver(I) complexes ( 2a , 2b , 2c , 2d , 2e ). The five new 1‐phenyl‐3‐alkylbenzimidazolium salts ( 1a , 1b , 1c , 1d , 1e ) and their NHC–silver complexes ( 2a , 2b , 2c , 2d , 2e ) were characterized by the 1H NMR, 13C NMR and FT‐IR spectroscopic methods and elemental analysis techniques. Also, the two NHC–silver complexes 2b and 2c were characterized by single‐crystal X‐ray crystallography, which confirmed the linear C―Ag―Cl arrangements. The antibacterial activities of the NHC precursor and NHC–silver complexes were tested against three Gram‐positive bacterial strains (Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus) and three Gram‐negative bacterial strains (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) using the microdilution broth method. The NHC–silver complexes showed higher antibacterial activity than the NHC precursors. In addition, silver complexes 2a , 2b , 2c , 2d showed high antibacterial activity against the Gram‐positive bacteria L. monocytogenes and S. aureus compared to the standard, tetracycline. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A facile and efficient synthesis of N‐alkyl‐2‐(1, 2 dihydro‐1‐methylene‐4‐oxobenzo[f] isoquinoline‐3(4H)‐yl)‐2‐phenylacetamides is performed by the consecutive, two‐step procedure that consists of Ugi and Heck reactions. The Heck reaction was performed both by homogenous and a designed heterogeneous catalyst. The heterogeneous catalyst is a coordinated palladium to 1, 10‐phenanthroline attached to chitosan@Fe3O4 magnetite nanoparticles, which was shown to be more efficient than the homogenous Pd(OAc)2/PPh3 catalyst with good to excellent yields.  相似文献   

5.
Four novel Zinc–NHC alkyl/alkoxide/chloride complexes ( 4 , 5 , 9 and 9′ ) were readily prepared and fully characterized, including X‐ray diffraction crystallography for 5 and 9′ . The reaction of N‐methyl‐N′‐butyl imidazolium chloride ( 3.HCl ) with ZnEt2 (2 equiv.) afforded the corresponding [(CNHC)ZnCl(Et)] complex ( 4 ) via a protonolysis reaction, as deduced from NMR data. The alcoholysis of 4 with BnOH led to quantitative formation of the dinuclear Zn(II) alkoxide species [(CNHC)ZnCl(OBn)]2 ( 5 ), as confirmed by X‐ray diffraction analysis. The NMR data are in agreement with species 5 retaining its dimeric structure in solution at room temperature. The protonolysis reaction of N‐(2,6‐diisopropylphenyl)‐N′‐ethyl methyl ether imidazolium chloride ( 8.HCl ) with ZnEt2 (2 equiv.) yielded the [(CNHC)ZnCl(Et)] species 9 . The latter was found to be reactive with CH2Cl2 in solution and to cleanly convert to the corresponding Zn(II) dichloride [(CNHC)ZnCl2]2 ( 9′ ), whose molecular structure was also elucidated using X‐ray diffractometry. Unlike Zn(II)–NHC alkoxide species 1 and 2 , which contain a NHC flanked with an additional N‐functional group (i.e. thioether and ether, respectively), the Zn(II) alkoxide species 5 incorporates a monodentate NHC ligand. The Zn(II) complexes 1 , 2 and 5 were tested in the ring‐opening polymerization (ROP) of trimethylene carbonate (TMC). All three species are effective initiators for the controlled ROP of trimethylene carbonate, resulting in the production of narrow disperse PTMC material. Initiator 1 (incorporating a thioether moiety) was found to perform best in the ROP of TMC. Notably, the latter also readily undergoes the sequential ROP of TMC and rac‐LA in the presence of a chain‐transfer agent, leading to well‐defined and high‐molecular‐weight PTMC/PLA block copolymers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A series of new piano‐stool iron(II) complexes comprising N‐heterocyclic carbene ligands [Fe(Cp)(CO)2(NHC)]I (NHC = 1,3‐disubstituted imidazolidin‐2‐ylidene) have been synthesized and analyzed by 1H NMR, 13C NMR, IR, elemental analysis and mass spectrometric techniques. These compounds were easily prepared from the reaction of disubstituted imidazolidin‐2‐ylidene with [FeI(Cp)(CO)2] in toluene at room temperature. These complexes were tested in the catalytic hydrosilylation reaction of aldehydes and ketones with phenylsilane in solvent‐free conditions. After a basic hydrolysis step, the corresponding alcohols were obtained in good yields. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Six new [RhBr(NHC)(cod)] (NHC = N‐heterocyclic carbene; cod = 1,5‐cyclooctadiene) type rhodium complexes ( 4–6 ) have been prepared by the reaction of [Rh(μ‐OMe)(cod)]2 with a series of corresponding imidazoli(in)ium bromides ( 1–3 ) bearing mesityl (Mes) or 2,4,6‐trimethylbenzyl (CH2Mes) substituents at N1 and N3 positions. They have been fully characterized by 1 H, 13 C and heteronuclear multiple quantum correlation NMR analyses, elemental analysis and mass spectroscopy. Complexes of type [(NHC)RhBr(CO)2] (NHC = imidazol‐2‐ylidene) ( 7b–9b ) were also synthesized to compare σ‐donor/π‐acceptor strength of NHC ligands. Transfer hydrogenation (TH) reaction of acetophenone has been comparatively studied by using complexes 4–6 as catalysts. The symmetrically CH2Mes‐substituted rhodium complex bearing a saturated NHC ligand ( 5a ) showed the highest catalytic activity for TH reaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A series of monomeric palladacycle complexes bearing n‐butyl‐substituted N‐heterocyclic carbenes, namely [Pd(NHC)X(dmba)] (dmba: dimethylbenzylamine and [Pd(NHC)X(ppy)]; NHC: 1‐n‐butyl‐3‐substituted benzylimidazol‐2‐ylidene; ppy: 2‐phenylpyridine), were prepared either by transmetallation from the corresponding silver carbene complexes or by the reaction of the corresponding acetate‐bridged palladacycle dimer with N‐heterocyclic carbene ligands in high yields. The palladium(II) complexes were characterized using elemental analyses, APCI‐MS, 1H NMR and 13C NMR spectroscopies. These complexes are efficient in the Suzuki–Miyaura coupling reaction between phenylboronic acid and aryl bromides.  相似文献   

9.
1,3‐Diarylsubstituted imidazolinium salts, (NHC‐H)Cl, 3, containing hydrogen or alkyl groups at the 4,5‐positions of the imidazolidine ring, served as precursors to rhodium(I) complexes [RhCl(NHC)COD], 4, which were converted into cis‐[RhCl(NHC)(CO)2] complexes, 5. All compounds prepared were characterized by elemental analyses, 1H NMR and 13C NMR. The relative σ‐donor/π‐acceptor strength of the NHC ligands was determined by means of IR spectroscopy of 5. The ability of NHCs in 4 to enchance activity was explored in the 1,2‐addition of phenylboronic acid to aldehydes. A good correlation was observed between catalytic activity and the electron‐donating power of the NHC ligands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Herein, we report that a series of novel palladium(II)‐NHC complexes (NHC=N‐heterocyclic carbene) were synthesized. The structures of all novel complexes were characterized by 1H NMR, 13C NMR, FT‐IR spectroscopy and elemental analysis techniques. These palladium(II)‐NHC complexes were tested as efficient catalysts in the direct C—H bond activation of benzoxazole and benzothiazole with aryl bromides in the presence of 1 mol% catalyst loading at 150 °C for 4 h. Under the given conditions, various aryl bromides were successfully applied as the arylating reagents to achieve the 2‐arylbenzoxazoles and 2‐arylbenzothiazoles in acceptable to high yields.  相似文献   

11.
A series of novel substituted 3,4‐dihydro‐2H‐1,3‐benzoxazines were prepared in moderate to good yields by aza‐acetalizations of aromatic aldehydes with 2‐(N‐substituted aminomethyl)phenols in the presence of chlorotrimethylsilane or SnCl4. It was found that chlorotrimethylsilane was more effective for the reaction, especially for the reaction of fluorobenzaldehyde, and thereby, an efficient method for the preparation of 3,4‐dihydro‐2H‐1,3‐benzoxazines was developed. The structures of the compounds were determined by FT‐IR, 1H NMR, 13C NMR, MS, and elemental analysis.  相似文献   

12.
The phenylidenepyridine (ppy) palladacycles [PdCl(ppy)(IMes)] ( 4 ) [IMes = 1,3‐bis(mesityl)imidazol‐2‐ylidene] and [PdCl(ppy){(CN)2IMes}] ( 6 ) [(CN)2IMes = 4,5‐dicyano‐1,3‐bis(mesityl)imidazol‐2‐ylidene] were prepared by facile two step syntheses, starting with the reaction of palladium(II) chloride with 2‐phenylpyridine followed by subsequent addition of the NHC ligand to the precatalyst precursor [PdCl(ppy)]2. Suitable crystals for the X‐ray analysis of the complexes 4 and 6 were obtained. It was shown that 6 has a shorter NHC‐palladium bond than the IMes complex 4 . The difference of the palladium carbene bond lengths based on the higher π‐acceptor strength of (CN)2IMes in comparison to IMes. Thus, (CN)2IMes should stabilize the catalytically active central palladium atom better than IMes. As a measure for the π‐acceptor strength of (CN)2IMes compared to IMes, the selone (CN)2IMes · Se ( 7 ) was prepared and characterized by 77Se‐NMR spectroscopy. The π‐acceptor strength of 7 was illuminated by the shift of its 77Se‐NMR signal. The 77Se‐NMR signal of 7 was shifted to much higher frequencies than the 77Se‐NMR signal of IMes · Se. Catalytic experiments using the Mizoroki‐Heck reaction of aryl chlorides with n‐butyl acrylate showed that 6 is the superior performer in comparison to 4 . Using complex 6 , an extensive substrate screening of 26 different aryl bromides with n‐butyl acrylate was performed. Complex 6 is a suitable precatalyst for para‐substituted aryl bromides. The catalytically active species was identified by mercury poisoning experiments to be palladium nanoparticles.  相似文献   

13.
The reaction of 4‐phenyl‐2‐aminothiazole or 2‐amino pyridine with α‐bromo acetic (–)‐menthyl ester ( 2c ) yields new N‐alkyl cycloimmonium bromides ( 1c , 3 ) with the chiral (–)‐menthyl substituent, which were isolated and fully characterized by 1H and 13C NMR spectroscopy for the first time. In addition, starting from 4‐phenyl‐2‐aminothiazole, two further N‐alkyl cycloimmonium bromides ( 1a , 1b ) were prepared. The molecular and crystal structures of all three thiazole derived N‐alkyl cycloimmonium bromides ( 1a – c ) were determined by single‐crystal X‐ray diffraction. In all cases the crystal structures are dominated by N–H ··· Br hydrogen bonds, which results in the formation of an extensive hydrogen bonded network in the crystal. Interestingly, in all structures S ··· Br distances shorter than the sum of the van der Waals radii are observed.  相似文献   

14.
The activity of [Pd(C6H4CH2 NH2‐κ2‐C‐N)PPh3MOBPPY]OTf complex, A (MOBPPY = 4‐methoxybenzoylmethylenetriphenyl‐ phosphoraneylide), was investigated in the Heck–Mizoroki C? C cross‐coupling reaction under conventional heating and microwave irradiation conditions. The complex is an active and efficient catalyst for the Heck reaction of aryl halides. The yields were excellent using a catalytic amount of [Pd(C6H4CH2 NH2‐κ2‐C‐N)PPh3MOBPPY]OTf complex in N‐methyl‐2‐pyrrolidinone (NMP) at 130 °C and 600 W. In comparison to conventional heating conditions, the reactions under microwave irradiation gave higher yields in shorter reaction times. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Novel N‐aryl (and N‐alkyl) γ‐ and δ‐imino esters 2a–g ( 3a–g ) and N‐aryl (and N‐alkyl) ketimines 2h–j ( 3h–j ) were synthesized in high yields (80–99%) from their corresponding γ‐ and δ‐keto esters and ketones in this study. The structures of the synthesized compounds were clarified by Fourier transform infrared (FT‐IR), NMR (1H and 13C), mass spectrometry, and elemental analyses. Isomerizations [E/Z] were also determined by their 1H NMR spectra. The free‐radical scavenging activity of imines was evaluated using the 1,1‐diphenyl‐2‐picryl‐hydrazyl (DPPH) method. The relationships between the structure and antioxidant activity of these compounds are discussed. Among these compounds, 2a–c (at the concentration 1000 μg/mL) exhibit high antioxidant activity similar to those of the standards (butylated hydroxyanisole [ BHA], butylated hydroxytoluene [ BHT], and ascorbic acid).  相似文献   

16.
A new series of sterically hindered ligands containing (1R,2S,4R)‐(+)‐menthoxymethyl group attached to benzimidazole‐based N‐heterocyclic carbene (NHC), palladium–bis‐NHC complexes and (κ2C,N)‐palladacyclic NHC complexes have been synthesized and characterized using appropriate spectroscopic techniques. Catalytic performance of the palladium complexes has been investigated for allylic alkylation, Suzuki and Heck carbon–carbon coupling reactions. These complexes smoothly catalyse the carbon–carbon bond formation reactions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A series of novel benzimidazolium bromides containing bulky 3,5‐di‐tert ‐butyl group were synthesized in high yields as N‐heterocyclic carbene (NHC) ligands. These NHC ligands were metallated with Ag2O under moderate conditions to give novel silver–NHC complexes. The structures of all compounds were characterized using 1H NMR, 13CNMR, infrared and elemental analysis techniques, which supported the proposed structures. The silver–NHC complexes were screened for their in vitro antimicrobial activities against the standard bacterial strains Enterococcus faecalis , Staphylococcus aureus , Escherichia coli and Pseudomonas aeruginosa and the fungal strains Candida albicans and C. tropicalis . The results showed that most of the silver–NHC complexes inhibited the growth of all bacterial strains and fungal strains and were found to display effective antimicrobial activity against different microorganisms.  相似文献   

18.
Two Pd(II)–NHC complexes bearing benzimidazole and pyridine groups have been successfully prepared and fully characterized by NMR and X‐ray diffraction analysis. The structure of palladium complexes are a typical square‐planar with palladium surrounded by two pairs of trans‐arranged benzimidazole and carbene ligands. The Pd–NHC complexes have been proved to be a highly efficient catalyst for the Mizoroki–Heck coupling reaction of aryl halides with various substituted acrylates under mild conditions in excellent yields. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
New N‐Alkyl‐substituted imidazolium salts as well as a series of their corresponding [Pd(NHC)(MA)2] complexes have been obtained by three routes in good yield. The previously reported synthesis for the analogous N‐aryl substituted [Pd(NHC)(MA)2] complexes has been improved. The N‐alkyl‐substituted [Pd(NHC)(MA)2] complexes are thermally more labile than their N‐aryl counterparts. Catalytic transfer semi‐hydrogenation of phenylpropyne resulted in good to excellent chemo‐ and stereo‐ selectivity conversion into (Z)‐phenylpropene. The size of the alkyl substituents correlates with the rate of hydrogenation in the sense that more bulky substituents give rise to faster transfer hydrogenation rates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
An efficient and simple method developed for the synthesis of 6‐methyl‐1,2,3,4‐tetrahydro‐N‐aryl‐2‐oxo/thio‐4‐arylpyrimidine‐5‐carboxamide derivatives ( 4a‐o ) using UO2(NO3)2.6H2O catalyst under conventional and ultrasonic conditions. The ultrasound irradiation synthesis had shown several advantages such as milder conditions, shorter reaction times and higher yields. The structures of all the newly synthesized compounds have been confirmed by FT‐IR, 1H NMR, 13C NMR and mass spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号