首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene has become an ideal substrate for surface‐enhanced Raman scattering (SERS) to study the chemical enhancement mechanism. In comparison with mechanically exfoliated graphene, graphene oxide (GO) has been found to be a better substrate due to its highly negatively charged oxygen functional groups. In this work, the pH‐dependent SERS effect of aromatic molecules on GO are investigated. The results demonstrate that the Raman enhancement of dyes deposited on GO performs differently over a wide range of pH values (2 to 10). Adsorption experiments show that the pH‐dependent SERS effect is closely related to the adsorption of aromatic molecules on GO, which is dominated by the electrostatic interaction. Thus, the influence of pH in GO‐mediated SERS should be carefully considered, especially in its biomedical application. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
3.
A concentration‐dependent Raman study of dimethyl formamide (DMF) in Ag nanocolloidal solution was carried out in order to observe the effect of concentration on the surface enhancement mechanism. The Raman spectra in the region 900–2200 cm−1 comprising four prominent Raman modes were measured experimentally and analyzed at five different concentrations: 1, 3, 5, 7, 10 mM , and in neat DMF. In order to find the possible configurations of DMF + Ag complexes, density functional theory (DFT) calculations were carried out taking one, three and five Ag atom clusters. The Raman spectra of unconjugated DMF, DMF + Ag and DMF + 3Ag complexes were calculated theoretically to assign the vibrational modes under consideration more accurately and to understand the wavenumber shift and change in intensity observed in experimental measurements. Water present in the colloidal solution may also conjugate with DMF and its complexes with Ag. In order to see the influence of water on the wavenumber shift and intensity changes, we have also obtained the optimized structures and Raman modes of DMF + water and DMF + water + Ag complexes. Good agreement between the experimental and theoretical wavenumber shifts has been obtained by using B3LYP functional theory and CEP‐31G basis set for the DMF + Ag complex. The experimental results suggest that the SERS enhancement is concentration‐dependent. The concentration‐dependent linewidth shows the existence of the phenomena of motional narrowing and diffusion dynamics in the colloidal solution. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The highly fluorescent natural dye berberine can be easily identified in microscopic textile samples by surface‐enhanced Raman spectroscopy employing citrate‐reduced Ag colloid. The ordinary Raman (OR) and SERS spectra of berberine are presented and discussed in the light of a DFT calculation. Using FT‐Raman and FT‐SERS we could reliably compare relative intensity shifts and investigate the adsorption geometry of berberine on Ag nanoparticles. The significant enhancement in the FT‐SERS spectrum of the out‐of‐plane ring system bending deformation mode at 729 cm−1 relative to a group of in‐plane vibrations at around 1500 cm−1 was interpreted as evidence of a ‘flat‐on’ adsorption geometry. SERS was successfully used to identify berberine in silk fiber samples coated with colloidal Ag following a pretreatment with HCl vapor. The SERS method allowed us to detect berberine in a microscopic sample of a single silk fiber from a severely degraded and soiled 17th Century Chinese textile fragment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The local pH inside individual live glioma (U‐87 MG) cancer cells was monitored after treatment by the photodynamic therapy drug 6‐methyl‐1,3,8‐trihydroxyanthraquinone (emodin). The cellular pH is tracked by the real‐time measurement of the surface‐enhanced Raman scattering (SERS) from a probe that is embedded in the cell. The probe is a micrometer‐sized silica bead that is covered by nanosized silver colloids, which enhance Raman signal, and 4‐mercaptobenzoic acid (pMBA) whose molecular vibrations and resulting Raman spectrum are sensitive to pH. Visible excitation at different light dosages is used to activate the drug. The results indicate cell maintenance of internal pH and cell death at low and high light dosage, respectively. We demonstrate that these SERS probes are an effective tool for ex vivo pH monitoring in a live cell thanks to their high optical sensitivity and noninvasive usage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
We have been able to observe the surface‐enhanced Raman scattering (SERS) from 4‐mercaptopyridine (4‐Mpy) molecules adsorbed on ZnO nanocrystals, which display 103 enhancement factors (EFs). An excitation wavelength‐dependent behavior is clearly observed. Another molecule BVPP is also observed to have surface‐enhanced Raman signals. The chemical enhancement is most likely responsible for the observed enhancement, since plasmon resonances are ruled out. The research is important not only for a better understanding of the SERS mechanism, but also for extension of the application of Raman spectroscopy to a variety of adsorption problems on a semiconductor surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
We achieved single‐molecule surface‐enhanced Raman scattering (SM‐SERS) spectra from ultralow concentrations (10−15 M) of fullerene C60 on uniformly assembled Au nanoparticles. It was found that resonant excitation at 785 nm is a powerful tool to probe SM‐SERS in this system. The appearance of additional bands and splitting of some vibrational modes were observed because of the symmetry reduction of the adsorbed molecule and a relaxation in the surface selection rules. Time‐evolved spectral fluctuation and ‘hot spot’ dependence in the SM‐SERS spectra were demonstrated to result from the single‐molecule Raman behavior of the spherical C60 on Au nanoparticles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In surface‐enhanced Raman scattering (SERS), the scattered intensity is drastically increased due to a resonant interaction with surface plasmons of coin metals. SERS is a nondestructive spectroscopic method applied also to biomedical samples. It inherits the advantages of normal Raman spectroscopy and at the same time overcomes the inherent low sensitivity problem. These properties endow SERS with exciting opportunities to be a successful analytical tool for cell analysis. SERS can be used to detect only molecules located on or close to the metallic nanostructures which can support surface plasmon resonances for the enhancement of the Raman signals. Therefore, these metallic nanostructures play a key role in the application of SERS in cell analysis. By incorporating the SERS substrates into the biosamples, molecular structural probing and cellular imaging become possible. In the past decade, analysts worldwide have developed many schemes to study the chemical changes and component distribution in cells by using SERS. In this paper, the application of SERS in cell analysis is reviewed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Large area (3 × 3 cm2) substrates for surface‐enhanced Raman scattering were fabricated by combining femtosecond laser microstructuring and soft lithography techniques. The fabrication procedure is as follows: (i) femtosecond laser machining is used to create a silicon master copy, (ii) replicates from polydimethylsiloxane are made, and (iii) a 50‐nm‐thick gold film is deposited on the surface of the replicates. The resulting substrates exhibit strongly enhanced absorption in the spectral region of 350 ∼ 1000 nm and generate enhanced Raman signal with enhancement factor of the order of 107 for 10‐ 6 M rhodamine 6G. The main advantages of our substrates are low cost, large active area, and possibility for mass replication. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Carbendazim (MBC) is a fungicide widely used in agriculture, and there are serious concerns regarding the health risks that could be caused by this fungicide. Here, we explore its ultrasensitive detection by surface‐enhanced Raman scattering (SERS). First, to obtain maximum SERS signal, the adsorption of the target molecule onto metallic surface is essential. Therefore, we study the adsorption of the MBC onto the nanoparticle surface by SERS under different experimental conditions, such as different synthesis methods of nanoparticle, variable excitation wavelength, and fungicide concentration with the aim to detect MBC at low concentrations. Experiments are carried out with three kinds of colloidal nanoparticles: Ag and Au reduced by citrate and Ag reduced by hydroxylamine. However, mainly Ag colloids are highly efficient in the SERS detection of MBC. In addition, theoretical calculations of MBC Raman spectrum and that of the surface complex are used to help with the understanding the mechanisms responsible for the interaction between MBC and Ag. Ultraviolet–visible absorption spectroscopy showed displacement to the red of the plasmon resonance of Ag colloid in the presence of MBC. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In the present study, several natural organic dyes used in antiquity, especially in textile dyeing, were analysed by surface‐enhanced Raman scattering (SERS) spectroscopy, in order to build a wide database that could integrate the data previously published in the literature. In particular, we reported for the first time the SERS spectra of 11 dyes: dragon's blood, sandalwood, annatto, safflower yellow and red, old fustic, gamboge, catechu, kamala, aloe and sap green. Silver colloids (Ag colloids) prepared according to the Lee–Meisel procedure, i.e. by reduction of a silver nitrate (AgNO3) aqueous solution with trisodium citrate dihydrate, were used as substrate. As its efficiency had been tested in a previous work, sodium perchlorate (NaClO4) 1.8 M was again employed as aggregating agent, giving the best results when added to the silver nanoparticles after the analyte. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The expression for the surface‐enhanced hyper Raman scattering (SEHRS) cross‐section of symmetrical molecules within the framework of the dipole–quadrupole theory is presented. It is formed by contributions that depend on various dipole and quadrupole moments. The enhancement coefficients for the quadrupole enhancement mechanism in some limited cases can reach a value 1030. It is demonstrated that the contributions follow some selection rules. Qualitative classification of the contributions based on the enhancement degree is given. It is demonstrated that the SEHR spectra of pyrazine and pyridine can be explained by the presented theory. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The ability of normal Raman and surface‐enhanced Raman scattering (SERS) to identify and detect bacteria has shown great success in recent studies. The addition of silver nanoparticles to bacterial samples not only results in an enhanced Raman signal, but it also suppresses the native fluorescence associated with biological material. In this report, Raman chemical imaging (RCI) was used to analyze individual bacteria and complex mixtures of spores and vegetative cells. RCI uses every pixel or a binned pixel group (BPG) of the Raman camera as an independent Raman spectrograph, allowing collection of spatially resolved Raman spectra. The advantage of this technique resides primarily in the analysis of samples in complex backgrounds without the need for physically isolating or purifying the sample. Using a chemical imaging Raman microscope, we compare normal RCI to SERS‐assisted chemical imaging of mixtures of bacteria. In both cases, we are able to differentiate single bacterium in the Raman microscope's field of view, with a 60‐fold reduction in image acquisition time and a factor of 10 increase in the signal‐to‐noise ratio for SERS chemical imaging over normal RCI. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
We report for the first time the tip‐enhancement of resonance Raman scattering using deep ultraviolet (DUV) excitation wavelength. The tip‐enhancement was successfully demonstrated with an aluminum‐coated silicon tip that acts as a plasmonic material in DUV wavelengths. Both the crystal violet and adenine molecules, which were used as test samples, show electronic resonance at the 266‐nm excitation used in the experiments. With results demonstrated here, molecular analysis and imaging with nanoscale spatial resolution in DUV resonance Raman spectroscopy can be realized using the tip‐enhancement effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Melamine, a nitrogen‐rich chemical, has recently caused enormous economic losses to the food industry due to the cases of milk products adulterated by melamine. This has led to an urgent need of rapid and reliable methods for detection of melamine in food. In this study, surface‐enhanced Raman scattering (SERS) spectroscopy was used to detect melamine in liquid milk. The sample preparation with liquid milk is very easy; it has to be only diluted with double‐distilled water followed by centrifugation. By using a silver colloid, at least a 105‐fold enhancement of the Raman signal was achieved for the measurement of melamine. The limit of detection by this method was 0.01 µg ml−1 for melamine standard samples. Based on the intensity of the Raman vibrational bands normalised to that of the band at 928 cm−1 (CH2), an external standard method was employed for quantitative analysis. The linear regression square (R2) of the curve was 0.9998; the limit of quantitation using this approach was 0.5 µg ml−1 of melamine in liquid milk; the relative standard deviation was ≤10%; and recoveries were from 93 to 109%. The test results for SERS were very precise and as good as those obtained by liquid chromatography/tandem mass spectrometry. The method was simple, fast(only needs about 3 min), cost effective, and sensitive for the detection of melamine in liquid milk samples. Therefore, it is more suitable for the field detection of melamine in liquid milk. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
We show that the increase of surface‐enhanced hyper‐Raman scattering (SEHRS) intensity of organic dye molecules adsorbed on single silver (Ag) colloid aggregate in the presence of halide ions is a direct evidence of the chemical effect in the enhancement mechanism. Time‐dependent SEHRS measurements before and after adding halide ions enabled us to distinctly observe the chemical effect. The presence of the halide ions results to a more stable chemical interaction between metal and dye molecule, making it more resistant against photodegradation effects. This study can contribute in elucidating the chemical effect mechanism and aid in the development of SEHRS as a useful spectroscopic tool. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Quaternary protoberberine alkaloids are a class of natural dyes characterized by bright colors ranging from yellow to orange. As they present a strong fluorescence emission, their analysis by Raman spectroscopy is limited to specific techniques such as Fourier transform (FT)‐Raman and spectral shift Raman techniques such as shifted subtracted Raman difference spectroscopy (SSRDS) and shifted excitation Raman difference spectroscopy (SERDS). In a previous article, we successfully used surface‐enhanced Raman scattering (SERS) in the analysis of the alkaloid dye berberine in an ancient textile. The examination of the Raman and SERS spectra of berberine in combination with density functional theory (DFT) calculations indicated a flat adsorption geometry of the molecule on the Ag surface. In this article we extend that work to the study of related protoberberine alkaloids, palmatine, jatrorrhizine, and coptisine. The same adsorption geometry as in berberine was deduced. We found that the four alkaloids, although minimally different in their chemical structures, could be differentiated by the position of marker bands. Those bands are the most enhanced ones in the SERS spectra, which appear in the 700–800 cm−1 region. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Ethyl carbamate (EC), a potentially toxic compound, is found in alcoholic beverages and fermented foodstuff. A combined experimental and theoretical study of Raman on EC is reported in this work for the first time. The Raman bands observed for EC in solid phase are characteristic for the carbonyl group, C―C, C―H and N―H stretching and deformation vibrations. These spectral features coupled with a pKa study allowed establishing the neutral species of EC present in the aqueous solutions experimentally tested at different concentrations. In addition, by performing a density functional theory study in the gas phase, the calculated geometry, the harmonic vibrational modes, and the Raman scattering activities of EC were found to be in good agreement with our experimental data and helped establish the surface‐enhanced Raman scattering (SERS) behavior and EC adsorption geometry on the silver surfaces. The Raman peak at 1006 cm−1, assigned to the υs(CC) + ω(CH) modes, the strongest and best reproducible peak in the SERS spectra, was used for a quantitative evaluation of EC. The limit of detection, which corresponds to a signal‐to‐noise ratio equal to 3, was found to be 2 × 10−7 M (17.8 µg l−1). SERS spectra obtained by using hydroxylamine hydrochloride‐reduced silver nanoparticles provide a fast and reproducible qualitative and quantitative determination of EC in aqueous solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
We have developed a new substrate for surface‐enhanced Raman scattering (SERS) measurements involving a thin silver layer deposited over an ion‐etched TiO2 inverse opal. The latter is formed by chemically infiltrating a polystyrene opal array with TiO2 followed by a thermal decomposition of the spheres. The SERS response of the these substrates is examined for several sphere sizes and lasers wavelengths; the results show that such substrates yield high enhance factors, comparable to substrates involving a silver layer deposited directly on a polystyrene opal array. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The Raman and surface‐enhanced Raman spectra (SERS) of flavone and three of its hydroxy derivatives, 3‐hydroxyflavone (3‐HF) and 5‐hydroxyflavone (5‐HF) and quercetin (3,5,7,3′,4′ pentahydroxyflavone) have been obtained. The normal Raman (NR) spectra were taken in the powder form. The SERS spectra were obtained both on Ag colloids and Ag electrode substrates. Assignments of the spectrally observed normal modes were aided by density functional theory (DFT) calculations using the B3LYP functional and the 6‐31 + G* basis, a split valence polarized basis set with diffuse functions. Excellent fits were obtained for the observed spectra with little or no scaling. The most intense lines of the NR spectra are those in the CO stretching region (near 1600 cm−1). These lines are often weakened by proximity to the surface, while other lines at lower wavenumbers, due to in‐plane ring stretches, tend to be strongly enhanced. The SERS spectrum of flavone is weak both on the colloid and on the electrode, indicating weak attachment to the surface. In contrast, the SERS spectra of the hydroxy derivatives of flavone are intense, indicating the assistance of OH groups in attachment to the surface. The spectra of the various species are compared, and a case study of application to detection of a textile dye (Persian berries), which contains quercetin, is presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号