首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimuli-responsive DNA self-assembly shares the advantages of both designed stimuli-responsiveness and the molecular programmability of DNA structures, offering great opportunities for basic and applied research in dynamic DNA nanotechnology. In this minireview, we summarize the most recent progress in this rapidly developing field. The trigger mechanisms of the responsive DNA systems are first divided into six categories, which are then explained with illustrative examples following this classification. Subsequently, proof-of-concept applications in terms of biosensing, in vivo pH-mapping, drug delivery, and therapy are discussed. Finally, we provide some remarks on the challenges and opportunities of this highly promising research direction in DNA nanotechnology.  相似文献   

2.
Today, DNA nanotechnology is one of the methods of choice to achieve spatiotemporal control of matter at the nanoscale. By combining the peculiar spatial addressability of DNA origami structures with the switchable mechanical movement of small DNA motifs, we constructed reconfigurable DNA nanochambers as dynamic compartmentalization systems. The reversible extension and contraction of the inner cavity of the structures was used to control the distance‐dependent energy transfer between two preloaded fluorophores. Interestingly, single‐molecule FRET studies revealed that the kinetics of the process are strongly affected by the choice of the switchable motifs and/or actuator sequences, thus offering a valid method for fine‐tuning the dynamic properties of large DNA nanostructures. We envisage that the proposed DNA nanochambers may function as model structures for artificial biomimetic compartments and transport systems.  相似文献   

3.
DNA nanotechnology enables the synthesis of nanometer‐sized objects that can be site‐specifically functionalized with a large variety of materials. For these reasons, DNA‐based devices such as DNA origami are being considered for applications in molecular biology and nanomedicine. However, many DNA structures need a higher ionic strength than that of common cell culture buffers or bodily fluids to maintain their integrity and can be degraded quickly by nucleases. To overcome these deficiencies, we coated several different DNA origami structures with a cationic poly(ethylene glycol)–polylysine block copolymer, which electrostatically covered the DNA nanostructures to form DNA origami polyplex micelles (DOPMs). This straightforward, cost‐effective, and robust route to protect DNA‐based structures could therefore enable applications in biology and nanomedicine where unprotected DNA origami would be degraded.  相似文献   

4.
There is great interest in DNA nanotechnology, but its use has been limited to aqueous or substantially hydrated media. The first assembly of a DNA nanostructure in a water‐free solvent, namely a low‐volatility biocompatible deep‐eutectic solvent composed of a 4:1 mixture of glycerol and choline chloride (glycholine), is now described. Glycholine allows for the folding of a two‐dimensional DNA origami at 20 °C in six days, whereas in hydrated glycholine, folding is accelerated (≤3 h). Moreover, a three‐dimensional DNA origami and a DNA tail system can be folded in hydrated glycholine under isothermal conditions. Glycholine apparently reduces the kinetic traps encountered during folding in aqueous solvent. Furthermore, folded structures can be transferred between aqueous solvent and glycholine. It is anticipated that glycholine and similar solvents will allow for the creation of functional DNA structures of greater complexity by providing a milieu with tunable properties that can be optimized for a range of applications and nanostructures.  相似文献   

5.
Recent developments in DNA nanotechnology have brought various nanoscale structures,devices and functional systems for different applications.As biological barriers with significant functions,cell membranes proide direct interfaces for studying cellular environment and states.So far,DNA nanotechnology engineered on live cell membranes has advanced our fundamental understandings of DNA nanomaterials and facilitated the designs of novel sensing,imaging and therapeutic platforms.In this review,we highlighted strategies and outcomes of using DNA nanotechnology on cell membranes towards various biomedical applications,including biosensing,imaging,cellular function regulations and targeted cancer therapy.Furthermore,we also discussed the challenges and opportunities of DNA nanotechnology on cell membranes towards broader applications.  相似文献   

6.
Tile‐based self‐assembly is a powerful method in DNA nanotechnology and has produced a wide range of well‐defined nanostructures. But the resulting structures are relatively simple. Increasing the structural complexity and the scope of the accessible structures is an outstanding challenge in molecular self‐assembly. A strategy to partially address this problem by introducing flexibility into assembling DNA tiles and employing directing agents to control the self‐assembly process is presented. To demonstrate this strategy, a range of DNA nanocages have been rationally designed and constructed. Many of them can not be assembled otherwise. All of the resulting structures have been thoroughly characterized by gel electrophoresis and cryogenic electron microscopy. This strategy greatly expands the scope of accessible DNA nanostructures and would facilitate technological applications such as nanoguest encapsulation, drug delivery, and nanoparticle organization.  相似文献   

7.
Since the arrival of DNA nanotechnology nearly 40 years ago, the field has progressed from its beginnings of envisioning rather simple DNA structures having a branched, multi-strand architecture into creating beautifully complex structures comprising hundreds or even thousands of unique strands, with the possibility to exactly control the positions down to the molecular level. While the earliest construction methodologies, such as simple Holliday junctions or tiles, could reasonably be designed on pen and paper in a short amount of time, the advent of complex techniques, such as DNA origami or DNA bricks, require software to reduce the time required and propensity for human error within the design process. Where available, readily accessible design software catalyzes our ability to bring techniques to researchers in diverse fields and it has helped to speed the penetration of methods, such as DNA origami, into a wide range of applications from biomedicine to photonics. Here, we review the historical and current state of CAD software to enable a variety of methods that are fundamental to using structural DNA technology. Beginning with the first tools for predicting sequence-based secondary structure of nucleotides, we trace the development and significance of different software packages to the current state-of-the-art, with a particular focus on programs that are open source.  相似文献   

8.
DNA nanostructure‐based mechanical systems that control the distance between elements of interest have demonstrated great potential for various applications, including nanoplasmonic systems, molecular reactors, and other nanotechnology platforms. However, previously reported systems could not collectively manipulate a 2D or 3D nanoscale network of elements to various forms in multiple stages. A reconfigurable DNA accordion rack structure is introduced that is a DNA beam lattice that changes its conformation with a small amount of short‐length DNA locks as the controlling input. The lattice shape of the 2D DNA accordion rack and the diameter and the height of the 3D DNA nanotubular structure made of the DNA accordion rack could be controlled. Furthermore, by sequentially repeating the detachment and the attachment of the different DNA locks using strand displacement, the shape reconfiguration was repeatedly carried out.  相似文献   

9.
DNA折纸术是近年来提出的一种全新的DNA自组装的方法,是DNA纳米技术与DNA自组装领域的一个重大进展。与传统的DNA自组装技术不同,DNA折纸术通过将一条长的DNA单链(通常为基因组DNA)与一系列经过设计的短DNA片段进行碱基互补,能够可控地构造出高度复杂的纳米图案或结构,在新兴的纳米领域中具有广泛的潜在应用。本文在介绍DNA折纸术相关原理的基础上,就DNA折纸术的起源、发展及其在DNA芯片、纳米元件与材料等领域的潜在应用进行了概述,探讨了DNA折纸术未来可能的发展方向。  相似文献   

10.
DNA具有非凡的分子识别性能和显著的结构特征,这使得它在材料的纳米级调控方面具有独特的优越性,在许多领域也展现出广阔的应用前景。本文从模块化DNA自组装和DNA折纸术两个方面综述了近些年DNA纳米技术,包括近年来DNA纳米技术中比较新型的组装方法;并从DNA纳米结构作为模板定位纳米粒子和蛋白以及用于生物医药等方面介绍了DNA纳米技术的应用;同时,对DNA纳米技术发展及应用进行了展望。  相似文献   

11.
Madhavaiah Chandra 《Tetrahedron》2007,63(35):8576-8580
Branched DNA constructs have found wide application in DNA-based nanotechnology. Several reports describe the generation of branched DNA structures with variable numbers of arms to self-assemble with pre-designed architectures. Branched DNA is generated by using designed rigid crossover DNA molecules as building blocks. Alternatively, branched DNAs can also be generated by using synthetic branch points derived either from nucleoside or non-nucleoside building blocks. Herein, we report the synthesis of modified uridine derivatives as branching monomer for the synthesis of branched DNA and first studies of their self-assembling properties.  相似文献   

12.
Reconfigurable molecular events are key to molecular machines. In response to external cues, molecular machines rearrange/change their structures to perform certain functions. Such machines exist in nature, for example cell surface receptors, and have been artificially engineered. To be able to build sophisticated and efficient molecular machines for an increasing range of applications, constant efforts have been devoted to developing new mechanisms of controllable structural reconfiguration. Herein, we report a general design principle for pH‐responsive DNA motifs for general DNA sequences (not limited to triplex or i‐motif forming sequences). We have thoroughly characterized such DNA motifs by polyacrylamide gel electrophoresis (PAGE) and fluorescence spectroscopy and demonstrated their applications in dynamic DNA nanotechnology. We expect that it will greatly facilitate the development of DNA nanomachines, biosensing/bioimaging, drug delivery, etc.  相似文献   

13.
Single-walled carbon nanotubes (SWNTs) have received much attention in nanotechnology because of their potential applications in molecular electronics, field-emission devices, biomedical engineering, and biosensors. Carbon nanotubes as gene and drug delivery vectors or as "building blocks" in nano-/microelectronic devices has been successfully explored. However, since SWNTs lack chemical recognition, SWNT-based electronic devices and sensors are strictly related to the development of a bottom-up self-assembly technique. Here we present an example of using DNA duplex-based protons (H(+)) as a fuel to control reversible assembly of SWNTs without generation of waste duplex products that poison DNA-based systems.  相似文献   

14.
The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices.  相似文献   

15.
Self-assembly plays an important role in the formation of many (chiral) biological structures, such as DNA, alpha-helices or beta-sheets of proteins. This process, which is the main tool of Supramolecular Chemistry (i.e. the chemistry of the molecular assemblies and of the intermolecular bonds), starts to play a significant role in nanotechnology for the construction of functional synthetic structures of nanometer size. The control of chirality in synthetic self-assembled systems is very important for applications of these systems e.g. in molecular recognition or mimicking of the catalytic activity of enzymes. This tutorial review deals with the most representative contributions in the field of supramolecular chirality. Specifically, the discussion centers on several examples that represent the control over chirality for self-assembled systems in solution.  相似文献   

16.
The incorporation of synthetic molecules as corner units in DNA structures has been of interest over the last two decades. In this work, we present a facile method for generating branched small molecule‐DNA hybrids with controllable valency, different sequences, and directionalities (5′–3′) using a “printing” process from a simple 3‐way junction structure. We also show that the DNA‐imprinted small molecule can be extended asymmetrically using polymerase chain reaction (PCR) and can be replicated chemically. This strategy provides opportunities to achieve new structural motifs in DNA nanotechnology and introduce new functionalities to DNA nanostructures.  相似文献   

17.
Herein, we report a strategy for the synchronization of two self‐assembly processes to assemble stimulus‐responsive DNA nanostructures under isothermal conditions. We hypothesized that two independent assembly processes, when brought into proximity in space, could be synchronized and would exhibit positive synergy. To demonstrate this strategy, we assembled a ladderlike DNA nanostructure and a ringlike DNA nanostructure through two hybridization chain reactions (HCRs) and an HCR in combination with T‐junction cohesion, respectively. Such proximity‐induced synchronization adds a new element to the tool box of DNA nanotechnology. We believe that it will be a useful approach for the assembly of complex and responsive nanostructures.  相似文献   

18.
Minidumbbell (MDB) is a recently identified non-B DNA structure that has been proposed to associate with genetic instabilities. It also serves as a functional structural motif in DNA nanotechnology. DNA molecular switches constructed using MDBs show instant and complete structural conversions with easy manipulations. The availability of stable MDBs can broaden their applications. In this work, we found that substitutions of cytosine with 5-methylcytosine could lead to a significant enhancement in the thermal stabilities of MDBs. Consecutive methylations of cytosine in MDBs brought about cumulative stabilization with a drastic increase in the melting temperature by 23 °C. NMR solution structures of two MDBs containing 5-methylcytosine residues have been successfully determined and revealed that the enhanced stabilities resulted primarily from favorable hydrophobic contacts, more stable base pairs and enhanced base-base stackings involving the methyl group of 5-methylcytosine.  相似文献   

19.
With silicon-based microelectronic technology pushed to its limit,scientists hunt to exploit biomolecules to power the bio-computer as substitutes.As a typical biomolecule,DNA now has been employed as a tool to create computing systems because of its superior parallel computing ability and outstanding data storage capability.However,the key challenges in this area lie in the human intervention during the computation process and the lack of platforms for central processor.DNA nanotechnology has created hundreds of complex and hierarchical DNA nanostructures with highly controllable motions by exploiting the unparalleled self-recognition properties of DNA molecule.These DNA nanostructures can provide platforms for central processor and reduce the human intervention during the computation process,which can offer unprecedented opportunities for biocomputing.In this review,recent advances in DNA nanotechnology are briefly summarized and the newly emerging concept of biocomputing with DNA nanostructures is introduced.  相似文献   

20.
During the last two decades, scientists have developed various methods that allow the detection and manipulation of single molecules, which have also been called "in singulo" approaches. Fundamental understanding of biochemical reactions, folding of biomolecules, and the screening of drugs were achieved by using these methods. Single-molecule analysis was also performed in the field of DNA nanotechnology, mainly by using atomic force microscopy. However, until recently, the approaches used commonly in nanotechnology adopted structures with a dimension of 10-20 nm, which is not suitable for many applications. The recent development of scaffolded DNA origami by Rothemund made it possible for the construction of larger defined assemblies. One of the most salient features of the origami method is the precise addressability of the structures formed: Each staple can serve as an attachment point for different kinds of nanoobjects. Thus, the method is suitable for the precise positioning of various functionalities and for the single-molecule analysis of many chemical and biochemical processes. Here we summarize recent progress in the area of single-molecule analysis using DNA origami and discuss the future directions of this research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号