首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Stable isotope (13C, 18O, 34S) and trace element (Sr2+, Mg2+, Mn2+, Ba2+, Na+) investigations of elemental sulfur, primary calcites and mixtures of aragonite with secondary, post-aragonitic calcite from sulfur-bearing limestones have provided new insights into the geochemistry of the mineral forming environment of the native sulfur deposit at Machów (SE-Poland). The carbon isotopic composition of carbonates (δ13C = ?41 to ?47‰ vs. PDB) associated with native sulfur (δ34S = + 10 to + 15‰ vs. V-CDT) relates their formation to the microbiological anaerobic oxidation of methane and the reduction of sulfate derived from Miocene gypsum. From a comparison with experimentally derived fractionation factors the element ratios of the aqueous fluids responsible for carbonate formation are estimated. In agreement with field and laboratory observations, ratios near seawater composition are obtained for primary aragonite, whereas the fluids were relatively enriched in dissolved calcium during the formation of primary and secondary calcites. Based on the oxygen isotope composition of the carbonates (δ18O = ?3.9 to ?5.9‰ vs. PDB) and a secondary SrSO418O = + 20‰ vs. SMOW; δ34S = + 59‰ vs. V-CDT), maximum formation temperatures of 35°C (carbonates) and 47°C (celestite) are obtained, in agreement with estimates for West Ukraine sulfur ores. The sulfur isotopic composition of elemental sulfur associated with carbonates points to intense microbial reduction of sulfate derived from Miocene gypsum (δ34S ≈ + 23‰) prior to the re-oxidation of dissolved reduced sulfur species.  相似文献   

2.
Raman spectroscopy complemented with infrared spectroscopy has been used to study a series of selected natural halogenated carbonates from different origins, including bastnasite, parisite and northupite. The position of CO32− symmetric stretching vibration varies with the mineral composition. An additional band for northupite at 1107 cm−1 is observed. Raman spectra of bastnasite, parisite and northupite show single bands at 1433, 1420 and 1554 cm−1, respectively, assigned to the ν3 (CO3)2− asymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the CaO6 octahedron. No ν2 Raman bending modes are observed for these minerals. The band is observed in the infrared spectra, and multiple ν2 modes at 844 and 867 cm−1 are observed for parisite. A single intense infrared band is found at 879 cm−1 for northupite. Raman bands are observed forthe carbonate ν4 in‐phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite and 714 cm−1 for northupite. Multiple bands are observed in the OH stretching region for selected bastansites and parisites, indicating the presence of water and OH units in the mineral structure. The presence of such bands brings into question the actual formula of these halogenated carbonate minerals. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Pure nesquehonite (MgCO3·3H2O)/Mg(HCO3)(OH)·2H2O was synthesised and characterised by a combination of thermo‐Raman spectroscopy and thermogravimetry with evolved gas analysis. Thermo‐Raman spectroscopy shows an intense band at 1098 cm−1, which shifts to 1105 cm−1 at 450 °C, assigned to the ν1CO32− symmetric stretching mode. Two bands at 1419 and 1509 cm−1 assigned to the ν3 antisymmetric stretching mode shift to 1434 and 1504 cm−1 at 175 °C. Two new peaks at 1385 and 1405 cm−1 observed at temperatures higher than 175 °C are assigned to the antisymmetric stretching modes of the (HCO3) units. Throughout all the thermo‐Raman spectra, a band at 3550 cm−1 is attributed to the stretching vibration of OH units. Raman bands at 3124, 3295 and 3423 cm−1 are assigned to water stretching vibrations. The intensity of these bands is lost by 175 °C. The Raman spectra were in harmony with the thermal analysis data. This research has defined the thermal stability of one of the hydrous carbonates, namely nesquehonite. Thermo‐Raman spectroscopy enables the thermal stability of the mineral nesquehonite to be defined, and, further, the changes in the formula of nesquehonite with temperature change can be defined. Indeed, Raman spectroscopy enables the formula of nesquehonite to be better defined as Mg(OH)(HCO3)·2H2O. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The isotropic and anisotropic parts of the Raman spectra of NH2 bending and ν(CO) stretching modes of HCONH2 in a hydrogen‐bonding solvent, methanol, at different concentrations have been analyzed carefully in order to study the noncoincidence effect (NCE). In neat HCONH2, the experimentally measured values of noncoincidence Δνnc are ∼11 and ∼18 cm−1 for the NH2 bending and ν(CO) stretching modes, which reduce to 0.45 and 1.14 cm−1, respectively at the concentration of HCONH2 in mole fraction, χm = 0.1. The experimental results have been explained on the basis of two models, namely, the microscopic prediction of Logan and the macroscopic model of Mirone and Fini. The relative success of the two models in explaining the experimental data for both the modes have been discussed. It has been observed that in case of the ν(CO) stretching vibrational mode the Logan model can reproduce the experimental data rather precisely, whereas in the case of the NH2 bending mode, Mirone and Fini model yields more accurate results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Insight into the unique structure of hydrotalcites (HTs) has been obtained using Raman spectroscopy. Gallium‐containing HTs of formula Zn4 Ga2(CO3)(OH)12 · xH2O (2:1 ZnGa‐HT), Zn6 Ga2(CO3)(OH)16 · xH2O (3:1 ZnGa‐HT) and Zn8 Ga2(CO3)(OH)18 · xH2O (4:1 ZnGa‐HT) have been successfully synthesised and characterised by X‐ray diffraction (XRD) and Raman spectroscopy. The d(003) spacing varies from 7.62 Å for the 2:1 ZnGa‐HT to 7.64 Å for the 3:1 ZnGa‐HT. The 4:1 ZnGa‐HT showed a decrease in the d(003) spacing, compared to the 2:1 and 3:1 compounds. Raman spectroscopy complemented with selected infrared data has been used to characterise the synthesised gallium‐containing HTs. Raman bands observed at around 1050, 1060 and 1067 cm−1 are attributed to the symmetric stretching modes of the (CO32−) units. Multiple ν3 (CO32−) antisymmetric stretching modes are found between 1350 and 1520 cm−1, confirming multiple carbonate species in the HT structure. The splitting of this mode indicates that the carbonate anion is in a perturbed state. Raman bands observed at 710 and 717 cm−1 and assigned to the ν4 (CO32−) modes support the concept of multiple carbonate species in the interlayer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The Raman spectra of neat propionaldehyde [CH3CH2CHO or propanal (Pr)] and its binary mixtures with hydrogen‐donor solvents, water (W) and methanol (M), [CH3CH2CHO + H2O] and CH3CH2CHO + CH3OH] with different mole fractions of the reference system, Pr varying from 0.1 to 0.9 at a regular interval of 0.1, were recorded in the ν(CO) stretching region, 1600–1800 cm−1. The isotropic parts of the Raman spectra were analyzed for both the cases. The wavenumber positions and line widths of the component bands were determined by a rigorous line‐shape analysis, and the peaks corresponding to self‐associated and hydrogen‐bonded species were identified. Raman peak at ∼1721 cm−1 in neat Pr, which has been attributed to the self‐associated species, downshifts slightly (∼1 cm−1) in going from mole fraction 0.9 to 0.6 in (Pr + W) binary mixture, but on further dilution it shows a sudden downshift of ∼7 cm−1. This has been attributed to the low solubility of Pr in W (∼30%), which does not permit a hydrogen‐bonded network to form at higher concentrations of Pr. A significant decrease in the intensity of this peak in the Raman spectra of Pr in a nonpolar solvent, n‐heptane, at high dilution (C = 0.05) further confirms that this peak corresponds to the self‐associated species. In case of the (Pr + M) binary mixture, however, the spectral changes with concentration show a rather regular trend and no special features were observed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The removal of arsenate anions from aqueous media, sediments and wasted soils is of environmental significance. The reaction of gypsum with the arsenate anion results in pharmacolite mineral formation, together with related minerals. Raman and infrared (IR) spectroscopy have been used to study the mineral pharmacolite Ca(AsO3OH)· 2H2O. The mineral is characterised by an intense Raman band at 865 cm−1 assigned to the ν1 (AsO3)2− symmetric stretching mode. The equivalent IR band is found at 864 cm−1. The low‐intensity Raman bands in the range from 844 to 886 cm−1 provide evidence for ν3 (AsO3) antisymmetric stretching vibrations. A series of overlapping bands in the 300‐450 cm−1 region are attributed to ν2 and ν4 (AsO3) bending modes. Prominent Raman bands at around 3187 cm−1 are assigned to the OH stretching vibrations of hydrogen‐bonded water molecules and the two sharp bands at 3425 and 3526 cm−1 to the OH stretching vibrations of only weakly hydrogen‐bonded hydroxyls in (AsO3OH)2− units. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The Raman scattering cross section (RSCS) is an important parameter in the applications of Raman spectroscopy to make quantitative analysis. To date, the dependence of the RSCS on concentration has remained unclear. Nitrate aerosols can easily achieve a supersaturated state, which provides a way to obtain the RSCS especially under this state. In this study, Raman spectra of NaNO3 and Mg(NO3)2 solutions are obtained with molar water‐to‐solute ratios (WSRs) ranging from 84.2 to 2.30 and 93.8 to 7.32, respectively. With decreasing WSR, a shift to higher wavenumbers of the symmetric stretching band of nitrate ion, i.e. ν1(NO3), is observed, indicating the formation of various ion pairs. Meanwhile, the area ratio between the strongly and weakly hydrogen‐bonded components of water O H stretching envelope, i.e. ν(H2O), reduces as the WSR decreases, implying the transformation of water molecules from strong hydrogen‐bonding structures to the weak ones. However, a good linear relationship is revealed between the integrated intensity ratio of the ν(H2O) band to ν1(NO3) band and WSR. The results suggest that the RSCSs of NO3 and H2O are insensitive to the structures of both ion pairs and hydrogen‐bonding structures. This observation points to the possibility of conducting quantitative analysis through the area ratio of the ν(H2O) band to the ν1(NO3) band with Raman spectra without considering the formation of ion pairs and the variation of the hydrogen‐bonding structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The mixed anion mineral chalcophyllite Cu18Al2(AsO4)4(SO4)3(OH)24·36H2O has been studied by using Raman and infrared spectroscopies. Characteristic bands associated with arsenate, sulfate and hydroxyl units are identified. Broad bands in the OH stretching region are observed and are resolved into component bands. Estimates of hydrogen bond distances were made using a Libowitzky function. Both short and long hydrogen bonds were identified. Two intense bands at 841 and ∼814 cm−1 are assigned to the ν1 (AsO4)3− symmetric stretching and ν3 (AsO4)3− antisymmetric stretching modes. The comparatively sharp band at 980 cm−1 is assigned to the ν1 (SO4)2− symmetric stretching mode, and a broad spectral profile centred upon 1100 cm−1 is attributed to the ν3 (SO4)2− antisymmetric stretching mode. A comparison of the Raman spectra is made with other arsenate‐bearing minerals such as carminite, clinotyrolite, kankite, tilasite and pharmacosiderite. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Raman spectroscopy complemented with infrared spectroscopy has been used to study the rare‐earth‐based mineral decrespignyite [(Y,REE)4Cu(CO3)4Cl(OH)5· 2H2O] and the spectrum compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of decrespignyite displays three bands at 1056, 1070 and 1088 cm−1 attributed to the CO32− symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of the CO32− symmetric stretching vibration varies with the mineral composition. The Raman spectrum of decrespignyite shows bands at 1391, 1414, 1489 and 1547 cm−1, whereas the Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm−1, respectively, assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands are observed at 791, 815, 837 and 849 cm−1, which are assigned to the (CO3)2−ν2 bending modes. Raman bands are observed for decrespignyite at 694, 718 and 746 cm−1 and are assigned to the (CO3)2−ν4 bending modes. Raman bands are observed for the carbonate ν4 in‐phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite and 714 cm−1 for northupite. Multiple bands are observed in the OH stretching region for decrespignyite, bastnasite and parisite, indicating the presence of water and OH units in the mineral structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Raman spectra of the Cl3CCHO/CCl4 and Cl3CCHO/C6D12 binary systems were recorded as a function of the mole fraction. Features originating from self‐aggregates of chloral (trichloroethanal, trichloroacetaldehyde—TCAA) molecules were detected in different spectral regions. The most pronounced changes were observed in the vicinity of the ν(CO) and ν(C H) stretching vibration bands. Using two‐dimensional correlation spectroscopy (2D‐COS), evolving‐factor analysis (EFA) and multivariate curve resolution (MCR), dimer bands were identified, and their positions were determined. The ν(C H) stretching vibration band in dimers was blue‐shifted by nearly 18 cm−1, whereas the ν(CO) dimer band was red‐shifted by more than 5 cm−1. For these bands, the observed shifts were accompanied by an almost twofold change in the bandwidth, from approximately 19 and 6 cm−1 for dilute solutions (x = 0.05) to 36.6 and 11.5 cm−1, respectively, in pure TCAA. The formation of dimers was confirmed by multivariate analysis of the Raman spectra of chloral recorded as a function of temperature. Analogous analysis of dichloroacetyl chloride (DCAC) spectra gave an 8.9 cm−1 blue shift for the ν(C H) vibration band and − 5.5/− 10.1 cm−1 shifts for the ν(CO) stretching vibrations of the two conformers present. To facilitate the interpretation of experimental findings, the optimized geometries and vibrational wavenumbers of the Cl3CCHO/HCl2CCClO molecules and (Cl3CCHO)2/(HCl2CCClO)2 dimers were calculated at the B3LYP/6‐311 + + G(3df,3pd) level. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The high‐resolution stimulated Raman spectrum of the ν1 band of GeD4 with natural isotopic abundance germanium has been recorded. It has been analyzed as part of the ν13 stretching dyad. The ν1 and ν3 band centers have been deduced for all the isotopologues. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract Stable isotope ((13)C, (18)O, (34)S) and trace element (Sr(2+), Mg(2+), Mn(2+), Ba(2+), Na(+)) investigations of elemental sulfur, primary calcites and mixtures of aragonite with secondary, post-aragonitic calcite from sulfur-bearing limestones have provided new insights into the geochemistry of the mineral forming environment of the native sulfur deposit at Machów (SE-Poland). The carbon isotopic composition of carbonates (δ(13)C = -41 to -47‰ vs. PDB) associated with native sulfur (δ(34)S = + 10 to + 15‰ vs. V-CDT) relates their formation to the microbiological anaerobic oxidation of methane and the reduction of sulfate derived from Miocene gypsum. From a comparison with experimentally derived fractionation factors the element ratios of the aqueous fluids responsible for carbonate formation are estimated. In agreement with field and laboratory observations, ratios near seawater composition are obtained for primary aragonite, whereas the fluids were relatively enriched in dissolved calcium during the formation of primary and secondary calcites. Based on the oxygen isotope composition of the carbonates (δ(18)O = -3.9 to -5.9‰ vs. PDB) and a secondary SrSO(4) (δ(18)O = + 20‰ vs. SMOW; δ(34)S = + 59‰ vs. V-CDT), maximum formation temperatures of 35°C (carbonates) and 47°C (celestite) are obtained, in agreement with estimates for West Ukraine sulfur ores. The sulfur isotopic composition of elemental sulfur associated with carbonates points to intense microbial reduction of sulfate derived from Miocene gypsum (δ(34)S ≈ + 23‰) prior to the re-oxidation of dissolved reduced sulfur species.  相似文献   

14.
Insight into the unique structure of layered double hydroxides has been obtained using a combination of X‐ray diffraction and Raman spectroscopy. Indium‐containing hydrotalcites of formula Mg4In2(CO3)(OH)12· 4H2O [2:1 In‐LDH (layered double hydroxides)] through to Mg8In2(CO3)(OH)18· 4H2O (4:1 In‐LDH) with variation in the Mg : In ratio have been successfully synthesized. The d(003) spacing varied from 7.83 Å for the 2:1 LDH to 8.15 Å for the 3:1 indium‐containing layered double hydroxide. Raman spectroscopy complemented with selected infrared data has been used to characterize the synthesized indium‐containing layered double hydroxides of formula Mg6In2(CO3)(OH)16· 4H2O. Raman bands observed at around 1058, 1075 and 1115 cm−1 are attributed to the symmetric stretching modes of the CO32− units. Multiple ν3 CO32− antisymmetric stretching modes are found at around 1348, 1373, 1429 and 1488 cm−1 in the infrared spectra. The splitting of this mode indicates that the carbonate anion is in a perturbed state. Raman bands observed at 690 and 700 cm−1 assigned to the ν4 CO32− modes support the concept of multiple carbonate species in the interlayer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Insight into the unique structure of hydrotalcites has been obtained using Raman spectroscopy. Gallium‐containing hydrotalcites of formula Mg4Ga2(CO3)(OH)12· 4H2O (2:1 Ga‐HT) to Mg8Ga2(CO3)(OH)20· 4H2O (4:1 Ga‐HT) have been successfully synthesized and characterized by X‐ray diffraction and Raman spectroscopy. The d(003) spacing varied from 7.83 Å for the 2:1 hydrotalcite to 8.15 Å for the 3:1 gallium‐containing hydrotalcite. Raman spectroscopy complemented with selected infrared data has been used to characterize the synthesized gallium‐containing hydrotalcites of formula Mg6Ga2(CO3)(OH)16· 4H2O. Raman bands observed at around 1046, 1048 and 1058 cm−1 are attributed to the symmetric stretching modes of the CO32− units. Multiple ν3 CO32− antisymmetric stretching modes are found at around 1346, 1378, 1446, 1464 and 1494 cm−1. The splitting of this mode indicates that the carbonate anion is in a perturbed state. Raman bands observed at 710 and 717 cm−1 assigned to the ν4 (CO32−) modes support the concept of multiple carbonate species in the interlayer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The participation of hydrogen‐arsenate group (AsO3OH)2− in solid‐state compounds may serve as a model example for explaining and clarifying the behaviour of As and other elements during weathering processes in natural environment. The mineral geminite, a hydrated hydrogen‐arsenate mineral of ideal formula Cu(AsO3OH)·H2O, has been studied by Raman and infrared spectroscopies. Two samples of geminite of different origin were investigated and the spectra proved quite similar. In the Raman spectra of geminite, six bands are observed at 741, 812, 836, 851, 859 and 885 cm−1 (Salsigne, France), and 743, 813, 843, 853, 871 and 885 cm−1 (Jáchymov, Czech Republic). The band at 851/853 cm−1 is assigned to the ν1 (AsO3OH)2− symmetric stretching mode; the other bands are assigned to the ν3 (AsO3OH)2− split triply degenerate antisymmetric stretching mode. Raman bands at 309, 333, 345 and 364/310, 333 and 345 cm−1 are attributed to the ν2 (AsO3OH)2− bending mode, and a set of higher wavenumber bands (in the range 400–500 cm−1) is assigned to the ν4 (AsO3OH)2− split triply degenerate bending mode. A very complex set of overlapping bands is observed in both the Raman and infrared spectra. Raman bands are observed at 2289, 2433, 2737, 2855, 3235, 3377, 3449 and 3521/2288, 2438, 2814, 3152, 3314, 3448 and 3521 cm−1. Two Raman bands at 2289 and 2433/2288 and 2438 cm−1 are ascribed to the strong hydrogen bonded water molecules. The Raman bands at 3235, 3305 and 3377/3152 and 3314 cm−1 may be assigned to the ν OH stretching vibrations of water molecules. Two bands at 3449 and 3521/3448 and 3521 cm−1 are assigned to the OH stretching vibrations of the (AsO3OH)2− units. The lengths of the O H···O hydrogen bonds vary in the range 2.60–2.94 Å (Raman) and 2.61–3.07 Å (infrared). Two Raman and infrared bands in the region of the bending vibrations of the water molecules prove that structurally non‐equivalent water molecules are present in the crystal structure of geminite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The Raman spectra of 3‐(pent‐1‐enyl) methyl ether (3‐methoxypent‐1‐ene) and four deuterium‐labelled analogues are reported and discussed. Correlations between specific structural features and the associated Raman bands are developed, with a view to enhancing the analytical application of Raman spectroscopy in investigating materials containing an alkenyl group. Particular attention is given to developing means of distinguishing the methyl group attached to the carbon skeleton from that of the methoxy group, to maximize the analytical utility of the signals associated with ν(sp2 CH), ν(sp2 CH2) and ν(CC) stretching vibrations, and to interpreting in more detail certain δ(sp2 CH) and δ(sp2 CH2) vibrations of the atoms of the double bond. These results establish a definitive spectroscopic protocol for differentiating a methoxy group from a methyl substituent attached directly to a carbon atom in unsaturated ethers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Magnesium minerals are important in the understanding of the concept of geosequestration. The two hydrated hydroxy magnesium‐carbonate minerals artinite and dypingite were studied by Raman spectroscopy. Intense bands are observed at 1092 cm−1 for artinite and at 1120 cm−1 for dypingite, attributed ν1 symmetric stretching mode of CO32−. The ν3 antisymmetric stretching vibrations of CO32− are extremely weak and are observed at 1412 and 1465 cm−1 for artinite and at 1366, 1447 and 1524 cm−1 for dypingite. Very weak Raman bands at 790 cm−1 for artinite and 800 cm−1 for dypingite are assigned to the CO32−ν2 out‐of‐plane bend. The Raman band at 700 cm−1 of artinite and at 725 and 760 cm−1 of dypingite are ascribed to CO32−ν2 in‐plane bending mode. The Raman spectrum of artinite in the OH stretching region is characterised by two sets of bands: (1) an intense band at 3593 cm−1 assigned to the MgOH stretching vibrations and (2) the broad profile of overlapping bands at 3030 and 3229 cm−1 attributed to water stretching vibrations. X‐ray diffraction studies show that the minerals are disordered. This is reflected in the difficulty of obtaining Raman spectra of reasonable quality, and explains why the Raman spectra of these minerals have not been previously or sufficiently described. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Raman spectroscopy has been used to study the rare‐earth mineral churchite‐(Y) of formula (Y,REE)(PO4) ·2H2O, where rare‐earth element (REE) is a rare‐earth element. The mineral contains yttrium and, depending on the locality, a range of rare‐earth metals. The Raman spectra of two churchite‐(Y) mineral samples from Jáchymov and Medvědín in the Czech Republic were compared with the Raman spectra of churchite‐(Y) downloaded from the RRUFF data base. The Raman spectra of churchite‐(Y) are characterized by an intense sharp band at 975 cm−1 assigned to the ν1 (PO43−) symmetric stretching mode. A lower intensity band observed at around 1065 cm−1 is attributed to the ν3 (PO43−) antisymmetric stretching mode. The (PO43−) bending modes are observed at 497 cm−12) and 563 cm−14). Some small differences in the band positions between the four churchite‐(Y) samples from four different localities were found. These differences may be ascribed to the different compositions of the churchite‐(Y) minerals. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The mixed anion mineral parnauite Cu9[(OH)10|SO4|(AsO4)2]·7H2O has been studied by Raman spectroscopy. Characteristic bands associated with arsenate, sulphate and hydroxyl units are identified. Broad bands are observed and are resolved into component bands. Two intense bands at 859 and 830 cm−1 are assigned to the ν1 (AsO4)3− symmetric stretching and ν3 (AsO4)3− antisymmetric stretching modes. The comparatively sharp band at 976 cm−1 is assigned to the ν1 (SO4)2− symmetric stretching mode and a broad‐spectral profile centered upon 1097 cm−1 is attributed to the ν3 (SO4)2− antisymmetric stretching mode. A comparison of the Raman spectra is made with other arsenate‐bearing minerals such as carminite, clinotyrolite, kankite, tilasite and pharmacosiderite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号