首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
The capability of anti‐Stokes/Stokes Raman spectroscopy to evaluate chemical interactions at the interface of a conducting polymer/carbon nanotubes is demonstrated. Electrochemical polymerisation of the monomer 3,4‐ethylenedioxythiophene (EDOT) on a Au support covered with a single‐walled carbon nanotube (SWNT) film immersed in a LiClO4/CH3CN solution was carried out. At the resonant optical excitation, which occurs when the energy of the exciting light coincides with the energy of an electronic transition, poly(3,4‐ethylenedioxythiophene) (PEDOT) deposited electrochemically as a thin film of nanometric thickness on a rough Au support presents an abnormally intense anti‐Stokes Raman spectrum. The additional increase in Raman intensity in the anti‐Stokes branch observed when PEDOT is deposited on SWNTs is interpreted as resulting from the excitation of plasmons in the metallic nanotubes. A covalent functionalisation of SWNTs with PEDOT both in un‐doped and doped states takes place when the electropolymerisation of EDOT, with stopping at +1.6 V versus Ag/Ag+, is performed on a SWNT film deposited on a Au plate. The presence of PEDOT covalently functionalised SWNTs is rationalised by (1) a downshift by a few wavenumbers of the polymer Raman line associated with the symmetric C C stretching mode and (2) an upshift of the radial breathing modes of SWNTs, both variations revealing an interaction between SWNTs and the conjugated polymer. Raman studies performed at different excitation wavelengths indicate that the resonant optical excitation is the key condition to observe the abnormal anti‐Stokes Raman effect. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The aim of this work is to illustrate the power of recently developed methods for measuring resonance Raman scattering (RRS) spectra of efficient fluorophores (using a standard continuous wave excitation and a charge‐coupled device (CCD)‐based Raman spectrometer), by applying them to a detailed study of a specific fluorophore: Nile Blue A. A combination of methods are used to measure the RRS properties of Nile Blue A in water (quantum yield (QY) of 4%) and ethanol (QY of 22%) at excitation wavelengths between 514 and 647 nm, thus covering both pre‐resonance and RRS conditions. Standard Raman measurements are used in situations where the fluorescence background is small enough to clearly observe the Raman peaks, while the recently introduced polarization‐difference RRS and continuously shifted Raman scattering are used closer to (or at) resonance. We show that these relatively straightforward methods allow us to determine the Raman cross‐sections of the most intense Raman peaks and provide an accurate measurement of their line‐width; even for broadenings as low as ∼ 4 cm − 1. Moreover, the obtained Raman excitation profiles agree well with those derived from the optical absorption by a simple optical transform model. This study demonstrates the possibility of routine RRS measurements using standard Raman spectrometers, as opposed to more complicated time‐resolved techniques. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
We have synthesized 4‐[N‐phenyl‐N‐(3‐methylphenyl)‐amino]‐benzoic acid (4‐[PBA]) and investigated its molecular vibrations by infrared and Raman spectroscopies as well as by calculations based on the density functional theory (DFT) approach. The Fourier transform (FT) Raman, dispersive Raman and FT‐IR spectra of 4‐[PBA] were recorded in the solid phase. We analyzed the optimized geometric structure and energies of 4‐[PBA] in the ground state. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was studied using natural bond orbital analysis. The results show that change in electron density in the σ* and π* antibonding orbitals and E2 energies confirm the occurrence of intramolecular charge transfer within the molecule. Theoretical calculations were performed at the DFT level using the Gaussian 09 program. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compound, which show agreement with the observed spectra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Glass‐embedded silver nanoparticle patterns were fabricated by masked silver–sodium ion‐exchange process followed by etching to reveal the particles for surface‐enhanced Raman scattering (SERS). The intensity of the enhanced Raman signal is comparable to that of the fluorescence, and the detection limit of 1 nM for Rhodamine 6G has been achieved. Raman images at different etching depths and corresponding morphological images are compared to find optimal SERS signal. Our results demonstrate that silver nanoparticle patterns embedded in glass can be used as SERS‐active substrates. Nanoparticles can be formed in a glass of high optical quality and have potential to be integrated with optical waveguides for a sensor chip. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The resonance Raman spectroscopy in conjunction with the density functional theory calculations were used to study the excited state structural dynamics of 2‐mercapto‐1‐methylimidazole (MMI). The experimental UV absorption bands were assigned according to the time‐dependent density functional calculations. The vibrational assignments were done for the A‐band resonance Raman spectra of MMI in water and acetonitrile on the basis of the Fourier transform infrared (FT‐IR) and FT‐Raman measurements in solid, in water and in acetonitrile and the corresponding B3LYP/6‐311+G(d, p) computations. The dynamic structures of MMI were obtained by analysis of the resonance Raman intensity pattern and normal mode analysis. The differences in the dynamic structures of MMI and thiourea were revealed and explained. The structural dynamic of MMI was found to be similar to that of 2‐thiopyrimidone in terms of major reaction coordinates and thus favored the intra‐molecular proton transfer reaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
We report a resonance Raman study on free‐base tetraphenylporphine (H2TPP) and its chemically prepared diacid dispersed in polymethylcyanoacrylate (PMCA). Photoexcitation of the neutral porphine by laser light leads irreversibly to the formation of the diacid, with the π‐cation radical as intermediate species. Resonance Raman (RR) spectra of the diacid dispersed in the polymer obtained with 441.6 nm in the wavenumber region of 100–1650 cm−1 are recorded. Wavenumbers with other excitation lines are also reported for the diacid species. Some bands assigned to out‐of‐plane vibrational modes and forbidden under ideal D2h symmetry are also observed in the resonance Raman spectra of the diacid. These bands arise from the out‐of‐plane distortions, which reduce the symmetry of the molecule. These findings are supported by the electronic absorption studies of the diacid in the polymer. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
We perform a back‐to‐back comparison between two nonlinear vibrational imaging techniques: stimulated Raman scattering (SRS) and balanced detection Raman‐induced Kerr effect (BD‐RIKE). Using a compact fiber‐based laser system for generation of pump and Stokes signals, we image polymer beads as well as human hepatocytes under the same experimental conditions. We show that BD‐RIKE, despite the slightly lower signal levels, consistently offers an improved signal‐to‐noise ratio with respect to SRS, resulting in significantly higher image quality. Importantly, we observe that such quality is not affected by the static birefringence of the sample, which makes BD‐RIKE a robust and attractive alternative to SRS. We also highlight a unique advantage of the technique, which is its capability to easily access both the real and imaginary parts of the nonlinear susceptibility, thus allowing for vibrational phase imaging. The phase information can be readily obtained from BD‐RIKE with minimal experimental effort and provides an additional chemical selectivity channel for coherent Raman microscopy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
9.
As an infrared Raman probe, the molecule 3,3′‐diethylthiatricarbocyanine iodide (DTTC) has received much attention in the past decades due to its potential applications in Raman imaging, single‐cell detection, cancer diagnosis, and surface‐enhanced Raman scattering (SERS). In this work, ordinary Raman, SERS, and theoretical Raman spectra were investigated to estimate the DTTC suspension. More specifically, the original gold nanospheres (60 nm diameter) and gold nanorods were encoded with DTTC and stabilized with a layer of thiol–polyethylene glycol as Raman reporter; SERS data were also obtained from the samples. Hartree–Fock theory and density functional theory (DFT) calculation were applied to calculate the optimized Raman spectra of DTTC in water on the B3LYP/6‐31G level. Subsequently, the obtained experimental spectra from DTTC were carefully compared with the theoretically calculated spectra, and good agreement was obtained between the theoretical and experimental results.The bands between 500 and 3100 cm−1 in the ordinary Raman and SERS spectra were assigned as well. This work will facilitate the development of ultrasensitive SERS probes for advanced biomedical imaging applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
This study describes the application of benchtop and portable Raman spectroscopy for the in situ detection of cocaine hydrochloride in clothing impregnated with the drug. Raman spectra were obtained from a set of undyed natural and synthetic fibres and dyed textiles impregnated with the drug. The spectra were collected using three Raman spectrometers: one benchtop dispersive spectrometer coupled to a fibre‐optic probe and two portable spectrometers. Despite the presence of some spectral bands arising from the natural and synthetic polymer and dyed textiles, the drug could be identified by its characteristic Raman bands. High‐quality spectra of the drug could be acquired in situ within seconds and without any sample preparation or alteration of the evidential material. A field‐portable Raman spectrometer is a reliable technique that can be used by emergency response teams to rapidly identify unknown samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Natural and synthetic samples of analcime and pollucite (both zeolites belonging to the analcime group) were studied by means of micro‐Raman spectrometry, X‐ray fluorescence analysis (XFA) and X‐ray diffraction (XRD). On knowing the chemical and structural characteristics of each solid‐solution member, the observed shift in the spectral position of the Raman active modes can be explained and used for phase determination. As shown, the distinction between members of the analcime–pollucite solid‐solution series using Raman spectroscopy is significantly more conclusive than the corresponding XRD findings. Also, information about the structurally bound water inside the zeolite structure can be gained using Raman spectroscopy as long as a suitable exciting wavelength is selected. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
We present a generalized approach to obtain improved Raman intensity profiles from in‐depth studies performed by confocal Raman microspectroscopy (CRM) with dry objectives. The approach is based on regularized deconvolution of the as‐measured confocal profile, through a kernel that simulates optical distortions due to diffraction, refraction and collection efficiency on the depth response. No specific shape or restrictions for the recovered profile are imposed. The strategy was tested by probing, under different instrumental conditions, a series of model planar interfaces, generated by the contact of polymeric films of well‐defined thickness with a substrate. Because of the aforementioned optical distortions, the as‐measured confocal response of the films appeared highly distorted and featureless. The signal computed after deconvolution recovers all the films features, matching very closely with the response expected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
We present a simple experiment that allows the complete and direct characterization of the point spread function (PSF) in refraction‐aberrated depth profiling experiments with confocal Raman microscopy. We used a wedge‐shaped solid polymer film to induce refraction aberrations on the response of an infinitesimally thin Raman scatterer, represented by a polished silicon wafer. The system, with the film pasted on top of the Si wafer, was probed by a depth slicing technique under a dry‐optics configuration. Post‐acquisition processing of the Si and polymer intensity maps allowed the reconstruction of the axial PSF spatially resolved each 1 µm or less in the z‐axis and for virtually continuous values of focusing depth. In agreement with theory, we found that PSF broadens asymmetrically with focusing depth, with a marked shift in the focus point. From the shape of PSF, we obtained values of depth resolution within the film that confirm that axial discrimination is not drastically deteriorated, as suggested by previous works, and that confocal aperture effectively reduces the collection volume even under severe refraction interference. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Surface‐enhanced Raman scattering (SERS) on silver and gold colloid gels formed by a low molecular weight organic gelator, bis‐(S‐phenylalanine) oxalyl amide, was obtained. Strong Raman signals dominate in the SERS spectra of hydrogels containing silver nanoparticles prepared by citrate and borohydride reduction methods, whereas broad bands of low intensity are detected in the spectra of gold colloid gels. Resemblance between Raman spectrum of the crystalline substance and the SERS spectra of the silver nanoparticle–hydrogel composites implies the electromagnetic nature of the signal enhancement. A change in Raman intensity of the benzene and amide II bands caused by an increase in temperature and concentration indicates that the gelling molecules are strongly attached through the benzene moieties to the metal nanoparticles while participating in gel formation by intermolecular hydrogen bonding between the adjacent oxalyl amide groups. Transmission electron microscopy reveals a dense gel structure in the close vicinity of the enhancing metal particles for both silver colloid gels. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
FT‐IR and FT‐Raman spectra of 4‐chloro‐2‐(3‐chlorophenylcarbamoyl) phenyl acetate were studied. Vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes and the normal modes are assigned by potential energy distribution (PED) calculations. Simultaneous IR and Raman activation of the CO stretching mode shows the charge transfer interaction through a π‐conjugated path. Optimized geometrical parameters of the title compound are in agreement with the reported values. Analysis of the phenyl ring modes shows that C C stretching mode is equally active as strong bands in both IR and Raman, which can be interpreted as the evidence of intramolecular charge transfer via conjugated ring path and is responsible for hyperpolarizability enhancement leading to nonlinear optical activity. The red‐shift of the NH‐stretching wavenumber in the infrared spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Raman spectroscopy was applied to analyse structural changes in serum albumins (bovine serum albumin, BSA; human serum albumin, HSA) following proton and γ‐irradiation (0.5, 5 and 50 Gy). Characteristic Raman bands of both polypeptide backbone and amino acid residues were sensitive to irradiation. Significant damage of HSA/BSA was observed only at the highest dose (50 Gy). Raman spectra confirmed radiation‐induced denaturation, destruction of helical structures and aggregation of serum albumins. The differences in the dose‐dependent effects of proton and γ‐radiation on studied proteins are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Fourier transform infrared (FT‐IR) and Fourier transform (FT) Raman spectra of 3‐{[(2‐hydroxyphenyl)methylene]amino}‐2‐phenylquinazolin‐4(3H)‐one were recorded and analyzed. The vibrational wavenumbers of the title compound were computed using HF/6‐31G* and 6‐311G* basis sets and compared with experimental data. The assignments of the normal modes are done by potential energy distribution (PED)calculations. The prepared compound was identified by nuclear magnetic resonance (NMR) and mass spectra. Optimized geometrical parameters of the title compound are in agreement with reported structures. Shortening of CN bond lengths reveal the effect of resonance. The simultaneous IR and Raman activations of the CO stretching mode shows a charge transfer interaction through a π‐conjugated path. The first hyperpolarizability, infrared intensities and Raman activities are reported. The phenyl C C stretching modes are equally active as strong bands in both IR and Raman spectra, which are responsible for hyperpolarizability enhancement leading to nonlinear optical activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The water states in perfluorosulfonic acid membranes (Nafion®) were evaluated using low temperature differential scanning calorimetry (DSC) on both vapor and liquid penetrants. At low sorption levels, water sorbed in Nafion existed in the nonfreezable bound state until a critical value was reached. The critical, nonfreezable water content corresponded to 4.8 water molecules per sulfonate group. Beyond that critical value, additional sorbed water was partitioned between freezable and nonfreezable bound states. The freezable water was in intermediate or freezable bound water state with subzero fussion temperatures. The observed water fusion enthalpy for every additional gram of sorbed water was less than that of pure water. The partition coefficient (K) between the nonfreezable bound state and the freezable state water was estimated as 0.755. The critical nonfreezable water content (W c ) and the partition coefficient for vapor permeate in Nafion were similar to those of liquid water penetrant. These findings allow one to estimate the bound and freezable water distribution in Nafion. The K value, in conjunction with the critical water content (W c ), can be used as a quantitative indicator to characterize water states in ionomers. This model may serve as the basis to account for water transport, ionic conductivity, and proton transfer changes in various solid electrolyte membranes.  相似文献   

20.
Infrared, Raman and surface‐enhanced Raman scattering (SERS) spectra of 3‐(1‐phenylpropan‐2‐ylamino)propanenitrile (fenproporex) have been recorded. Density functional theory (DFT) with the B3LYP functional was used for optimizations of ground state geometries and simulation of Raman and SERS vibrational spectra of this molecule. Bands of the vibrational spectra were assigned in detail. The comparison of SERS spectra obtained by using colloidal silver and gold nanoparticles with the corresponding Raman spectrum reveals enhancement and shifts in bands, suggesting a possible partial charge‐transfer mechanism in the SERS effect. Information about the orientation of fenproporex on the nanometer‐sized metal structures is also obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号