首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design of effective cancer vaccines must be able to activate dendritic cells (DCs) of the innate immune system in order to induce immunity to pathogens and cancer. DCs patrol the body and once they encounter antigens, they orchestrate a complex mechanism of events and signals that can alert the adaptive immune system to action. However, DC‐based vaccines remain a challenge in part because the source and quality of antigens, the DC targeting molecule, type of adjuvant, and delivery vehicle must be optimized to induce a robust immune response. Gold nanoparticles (AuNPs) have now entered clinical trials as carriers due to their ease of functionalization with antigens, adjuvants, and targeting molecules. This progress report discusses how AuNPs can influence DC activation and maturation, as well as their potential impact on T helper (Th) differentiation. Ultimately, successful AuNP‐based DC vaccines are able to induce phagocytosis, activation/maturation, migration, T cell costimulation, and cytokine secretion, which is named AuNP‐induced DC tuning (AuNP‐DC tuning). Although at its infancy, understanding the processes of AuNP‐DC tuning will give a better understanding of how best to engineer AuNPs and will redefine the next generation of DC‐based vaccines.  相似文献   

2.
This study gives an original methodology to synthetize novel metallo‐drugs nanoparticles relevant for medicinal chemistry. Gold (HAuCl4) are complexes with antitumor compounds (paclitaxel (PTX); docetaxel (DTX)) and dicarboxylic acid‐terminated polyethylene‐glycol (PEG) that plays a role of surfactants. The proposed synthesis is fast and leads to hybrid‐metal nanoparticles (AuNPs) in which drug solubility is improved. The interactions between drugs (DTX, PTX), PEG diacid (PEG), and Au (III) ions to form hybrid nanocarriers called DTX IN PEG‐AuNPs and PTX IN PEG‐AuNPs, are characterized by various analytical techniques (Raman and UV–vis spectroscopies) and transmission electron microscopy. The efficient drugs release under pH conditions is also achieved and characterized showing an amazing reversible equilibrium between Au (III)‐complex‐drug and Au0NPs. For therapeutic purposes, such AuNPs are then decorated with the anti‐EGFR polyclonal antibodies, which specifically recognizes the hERG1 channel aberrantly expressed on the membrane of human lung cancer cells. This paper, through an original chemical approach, will occupy an important position in the field of nanomedicine, and hope that novel perspectives will be proposed for the development of high drug‐loading nanomedicines.  相似文献   

3.
The adsorption of cationic and neutral R6G molecules on Au nanoparticles was elucidated by surface enhanced Raman scattering (SERS). The steric hindrance at hydroethyl amino (‐N(H)Et) groups in R6G was evidenced by the observation that R6G+ adsorb on as‐prepared gold nanoparticles (AuNPs) only with electrostatic forces, in contrast to the electrostatic and chemical adsorption of R123+ with dihydro amino (‐NH2) groups on as‐prepared AuNPs. Large steric hindrance at the amino groups in R6G yielded saturated coverage of 700 molecules/AuNP for R6G+ significantly fewer than 1000 molecules/AuNP for R123+. In addition, neutral R6G0 on AuNPs showed markedly enhanced peaks at 1200–1600 cm−1, which were not observed in Raman spectra of R6G0 in bulk solution, and also in SERS of R6G+ on AuNPs. These bands are attributed to vibrational modes of an outer phenyl ring and ethyl amino groups, which are vertical to a xanthene plane, on the basis of theoretical analysis of molecular vibrations. Thus, Raman scattering of these bands is enhanced under an inclined orientation of R6G0 molecules chemisorbed on AuNPs via lone pair electrons at amino groups. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Nanoparticle (NP) surfaces are modified immediately by the adsorption of proteins when injected into human blood, leading to the formation of a protein corona. The protein‐coated NPs may be recognized by living cells. Furthermore, the adsorption of serum proteins is a continuous competitive dynamic process that is the key to exploring the bioapplication and biosafety of NPs. In this study, the competitive dynamic adsorption of some serum proteins on gold nanoparticles (AuNPs) is investigated by fluorescence emission, dynamic light scattering, and sodium dodecyl sulfate‐polyacrylamide gel electrophoresis. Serum proteins with different AuNPs binding affinities are used to address the competitive dynamic process of protein‐AuNP interactions in vitro. The results show that more abundant serum proteins, such as human serum albumin, adsorb on AuNPs first, and then the higher binding affinity and lower concentration serum proteins, such as fibrinogen (FIB), replace the abundant and lower binding affinity serum proteins. However, the lower binding affinity serum proteins, such as hemoglobin, do not replace the higher binding affinity proteins from the protein‐AuNP conjugates. During the dynamic exchange process, the larger the binding affinities difference between two proteins, the faster the exchange rate. This dynamic exchange process usually takes longer in inner protein‐AuNP conjugates (hard corona) than the external surface of protein‐AuNP conjugates (soft corona).  相似文献   

6.
Transferrin (Tf) can control the level of free iron as iron‐binding blood plasma glycoprotein in biological fluids. Tf has been exploited in the recent years on account of the potential function as a drug carrier targeting to tumor cells. Cyanine dyes have been widely studied as photosensitizers. The binding mechanism of Tf with 3, 3′‐di(3‐sulfopropyl)‐4, 5, 4′, 5′‐dibenzo‐9‐ethyl‐thiacarbocyanine triethylammonium salt (ETC) was characterized at varying pHs and temperatures by fluorescence, UV‐Vis absorption, circular dichroism (CD), and molecular modeling methods. The results showed that the static fluorescence quenching occurred between Tf and ETC. It was found that ETC bound strongly with Tf with an intrinsic binding constant (Ka), in the order of 107 m ?1. The thermodynamic parameters demonstrated that van der Waals force or hydrogen bonds were the major binding force. The binding of ETC‐Tf caused the secondary conformational change of Tf with increasing the α‐helix content in Tf, which was confirmed by the results of spectroscopic experiments. Molecular modeling revealed that ETC bound residues located in the N‐lobe of Tf by van der Waals force and induced local structural changes of Tf. This study may provide the theoretical foundations for ETC as a probe to label Tf, which is further beneficial to the Tf‐targeted drugs in vivo. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In order to coat the entire surface of gold nanoparticles (AuNPs) by a single ligand, tripodal macromolecules comprising benzylic thioethers coordinating to the AuNP surface are synthesized and their abilities to stabilize AuNPs are investigated. Out of the five studied ligands 1 – 5 , the tetraphenylmethane‐based oligomers 4 and 5 display excellent AuNP coating features. Both ligand structures are able to control the dimensions of the AuNPs by stabilizing particles of narrow size distributions during their syntheses (1.05 ± 0.28 nm for Au‐4 , and 1.15 ± 0.34 nm for Au‐5 ). Closer inspection of these AuNPs by transmission electron microscopy and thermogravimetric analyses suggests that single ligands 4 and 5 are able to stabilize entire AuNPs. These particles Au‐4 and Au‐5 are obtained in good yields and display promising thermal stabilities (110 °C for Au‐4 , and 95 °C for Au‐5 ), making them interesting nanoscale inorganic–organic building blocks for further functionalization/processing by wet chemistry.  相似文献   

8.
Surface material functionalization including layer‐by‐layer (LbL) polyelectrolyte films with incorporated nanoparticles is a growing field with a wide range of biomedical applications: drug reservoirs, medical devices, or tissue engineering. In parallel, gold nanoparticles (AuNPs) can be grafted by drugs and sensitive molecules using simple protocols. This study shows that AuNP behavior is modified when they are entrapped into three partner LbL films in comparison to the colloidal solution. A polycationic (polyallylamine hydrochloride (PAH)) and a polyanionic (polyacrylic acid (PAA)) polymer is used to build films based on three cycles ((PAH/AuNP/PAA)3). To investigate the interaction with biomolecules and cells, three different films are developed changing the outer layer (either PAH or AuNP or PAA) with the same number of AuNP deposit. The best biocompatibility is observed with a polyacrylic acid outer layer. Due to the high capacity of drug grafting on gold nanoparticles, the results seem promising for the development of nanostructured biomedical devices.  相似文献   

9.
A simple ethanol sol‐based method for the synthesis of gold nanosheets (AuNSs) and gold nanoparticle‐over‐nanosheet (AuNP/NS) is developed. Gold nanoparticles (AuNPs) with average sizes of ≈8 nm are grown in situ on the surface of the AuNS, which forms a NP/NS structure that obtains strong, significantly improved, surface‐enhanced Raman spectroscopy activity with the magnitude ≈2 and ≈6 orders higher than the simplex AuNP and AuNS, respectively. This performance is mainly attributed to uniform AuNPs that are closely packed over AuNS and coupled with NP–NS and NP–NP interactions. The NP–NS–GP (the gap between NP–NS) is narrower than NP–NP–GP in which much stronger and steadier plasmon resonance is obtained that can significantly enhance the Raman signal. The results show that single‐crystalline AuNS is an ideal substrate, which can be further coated with other metallic NPs to form a new flexible, high‐activity and AuNS‐based nanocomposite for a wide variety of applications.  相似文献   

10.
Cyanazine residue poses a great threat to human health and its derivatives would remain in soils, natural waters, and other environmental domains for a long time. Herein, a simple, rapid, and ultra-sensitive analytical method for the determination of cyanazine (CZ) based on inner filter effect (IFE) of Au nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs) is first described in this study. With the presence of citrate-stabilized AuNPs, the fluorescence of GSH-capped CdTe QDs was remarkably quenched by AuNPs via IFE. The fluorescence of the AuNP–CdTe QD system was recovered upon addition of CZ. CZ can adsorb on to the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on CdTe QDs was weakened, and the fluorescence intensity of CdTe QDs was recovered accordingly. A good linear correlation for detection of CZ was exhibited from 0.05 to 9 μM, and the detection limit reached 0.1568 μM, which was much lower than the safety limit required by the USA, the UK, and China. In order to probe into the selectivity of AuNPs towards CZ over other pesticides, various frequently used pesticides were mixed with AuNPs. AuNP composite solution shows good selectivity towards CZ among other pesticides. This method was successfully carried out for the assessment of CZ in real samples with satisfactory results, which revealed many advantages such as high sensitivity, low cost, and non-time-consuming compared with traditional methods.  相似文献   

11.
A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low‐wavenumber‐resolution Raman imaging, Rayleigh scatter imaging and two‐photon fluorescence (TPE) spectral imaging, fast ‘amplitude‐only’ TPE‐fluorescence imaging and high‐spectral‐resolution Raman imaging. This multi‐dimensional fluorescence–Raman microscopy platform enables rapid imaging along the fluorescence emission and/or Rayleigh scatter dimensions. It is shown that optical contrast in these images can be used to select an area of interest prior to subsequent investigation with high spatially and spectrally resolved Raman imaging. This new microscopy platform combines the strengths of Raman ‘chemical’ imaging with light scattering microscopy and fluorescence microscopy and provides new modes of correlative light microscopy. Simultaneous acquisition of TPE hyperspectral fluorescence imaging and Raman imaging illustrates spatial relationships of fluorophores, water, lipid and protein in cells. The fluorescence–Raman microscope is demonstrated in an application to living human bone marrow stromal stem cells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A multimodal nonlinear optical microscope that combines coherent anti‐Stokes Raman scattering (CARS), two‐photon excitation fluorescence (TPEF), second‐harmonic generation (SHG) and sum‐frequency generation (SFG) was developed and applied to image breast cancer tissue and MCF‐7 cells as well as monitoring anticancer drug delivery in live cells. TPEF imaging showed that drugs are preferentially localized in the cytoplasm and the nuclear envelope in resistant cells. Moreover, the extracellular matrix was observed by TPEF signals arising from elastin's autofluorescence and SHG signals from collagen fibrils in breast tissue sections. Additionally, CARS signals arising from proteins and (PO2) allowed identification of tumors. Label‐free imaging with chemical contrast of significant components of cancer cells and tissue suggests the potential of multimodal nonlinear optical microscopy for early detection and diagnosis of cancer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A wavelength-calibration method for prism-based spectral imaging of single-molecule (SM) fluorescence was developed. With this method, a wavelength reference is provided by photoluminescence from 50-nm-diameter gold nanoparticles (AuNPs) binding with fluorophores. The AuNPs each bound with a SM fluorophore, either Alexa488 or Cy3, to form AuNP/fluorophore complexes in tris-HCl buffer. Each complex was immobilized on a silica slide and then excited by total-internal-reflection illumination to make it emit SM fluorescence and AuNP photoluminescence. The portion of the AuNP photoluminescence transmitted by a band-pass filter gives the wavelength reference. A spectral-imaging system composed of a prism-based spectroscope (with a reciprocal dispersion of about 4 nm/μm) and a charge-coupled device with 6.45-μm-square pixels was used to obtain an SM-fluorescence spectrum and a wavelength-reference spectrum. Through smoothed differentiation of these two spectra, the peak location of the former in relation to the latter was determined with subpixel precision. After that, the SM fluorophore was classified as either Alexa488 or Cy3 according to the peak location. The error rate of the classification was estimated to be only 0.3%.  相似文献   

14.
The ζ‐potential and hydrodynamic size (dh) of nanoparticles (NPs) are systematically controlled by capping gold NPs (AuNPs) with polymers having different charges and treating them in NaCl solutions of diverse concentrations. Interactions between AuNPs in hydrogel are caused by chemical reactions induced by 1,4‐dithiothreitol. The effect of ζ‐potential is clear, as negatively charged AuNPs can be aggregated in neutral agarose gel, but the amount of aggregation is significantly affected by the magnitude of the negative surface charge on the AuNPs. However, all positively charged AuNPs show negligible aggregation in agarose gel with slightly negative polarity. The effect of dh on AuNP aggregation is different from that of ζ‐potential. Although AuNPs with small dh generally show more aggregation than those with large dh, the amount of AuNP capping layer is critical. Thus, the amount of polymer present on NP surface needs to be considered to investigate the effect of dh on AuNP aggregation. Through extended Derjaguin, Landau, Verwey, Overbeek (XDLVO) theory, it is shown that the charges of the AuNPs and the hydrogel, as well as the dh of the NPs, are related to electrostatic repulsion and steric hindrance, which affect AuNP aggregation in hydrogel.  相似文献   

15.
Multifunctional nanoparticles for selectively targeting tumor cells and effectively delivering multiple drugs are urgently needed in cancer therapy. Here, a dual‐drug delivery system is prepared, based on functionalized hollow mesoporous silica nanoparticles (HMSNs). Doxorubicin (DOX) hydrochloride is loaded into the hollow core, and dichloro(1,2‐diaminocyclohexane)platinum (II) (DACHPt) is stored in the pores of the shell by the coordination interaction with the carboxyl groups modified on the pore walls, which also serves as barriers to control the DOX release. Detailed studies in vitro indicate that the DACHPt release is triggered by Cl? through the cleavage of the coordination interaction, and the DOX release depends on the release rate of DACHPt and the environmental pH value. The surface of the mechanized nanoparticles is also modified by transferrin (Tf) to achieve the tumor specificity. Compared with individual drug delivery systems, the dual‐drug delivery system shows synergistic efficacy on the cell cytotoxicity (combination index = 0.30), resulting in improved tumor cell killing. The present dual‐drug delivery system provides a promising strategy to develop controlled and targeted combination therapies for efficient cancer treatment.  相似文献   

16.
In this report, gold nanoparticles (AuNPs) labeled by Raman reporters (AuNPs‐R6G) were assembled on glass and used as the seeds to in situ grow silver‐coated nanostructures based on silver enhancer solution, forming the nanostructures of AuNPs‐R6G@Ag, which were characterized by scanning electron microscopy (SEM) and UV‐visible spectroscopy. More importantly, the obtained silver‐coated nanostructures can be used as a surface enhancement Raman scattering (SERS) substrate. The different SERS activities can be controlled by the silver deposition time and assembly time of AuNPs‐R6G on glass. The results indicate that the maximum SERS activity could be obtained on AuNPs‐R6G when these nanostructures were assembled on glass for 2 h with silver deposition for 2 min. In addition, the reproducibility of SERS signal on the fabricated nanostructures is very high with the intensity error lower than 15%, which has great promise as a probe for application in bioanalysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Doxycycline (DOXY) is a tetracycline antibiotic with a potent antibacterial activity against a wide variety of bacteria. One potential strategy to enhance the penetration and the antibacterial activity of antibiotics is the use of nanotechnology. In this work, an innovative synthesis of stable PEGylated‐gold nanoparticles (PEG‐AuNPs) loaded with DOXY is reported. As far as it is known, this is the first report on the combination of DOXY with AuNPs as polymeric complex. The obtained nanoparticles are fully characterized by transmission electron microscopy, dynamic light scattering, zeta‐potential, and UV–vis and Raman spectroscopy. The stability and sustained activity of the drug in nanoparticles is determined on a panel of Gram‐positive and Gram‐negative bacteria in comparison with the native form of the drug. This combined therapeutic agent restores the susceptibility of DOXY and shows an antibacterial activity against major human pathogens.  相似文献   

18.
The current investigation deciphers aggregation pattern of gold nanoparticles (AuNPs) and lipid-treated AuNPs when subjected to aqueous sodium chloride solution with increasing ionic strengths (100–400 nM). AuNPs were synthesized using 0.29 mM chloroauric acid and by varying the concentrations of trisodium citrate (AuNP1 1.55 mM, AuNP2 3.1 mM) and silver nitrate (AuNP3 5.3 μM, AuNP4 10.6 μM) with characteristic LSPR peaks in the range of 525–533 nm. TEM analysis revealed AuNPs to be predominantly faceted nanocrystals with the average size of AuNP1 to be 35?±?5 nm, AuNP2 15?±?5 nm, AuNP3 30?±?5 nm, and AuNP4 30?±?5 nm and the zeta-average for AuNPs were calculated to be 31.23, 63.80, 26.08, and 28 nm respectively. Induced aggregation was observed within 10 s in all synthesized AuNPs while lipid-treated AuNP2 (AuNP2-L) was found to withstand ionic interferences at all concentration levels. However, lipid-treated AuNPs synthesized using silver nitrate and 1.55 mM trisodium citrate (AuNP3, AuNP4) showed much lower stability. The zeta potential values of lipid-treated AuNPs (AuNP1-L-1x/200, ??17.93?±?1.02 mV; AuNP2-L-1x/200, ??21.63?±?0.70; AuNP3-L-1x/200, ??14.54?±?0.90; AuNP3-L-1x/200 ??13.77?±?0.83) justified these observations. To summarize, AuNP1 and AuNP2 treated with lipid mixture 1 equals or above 1x/200 or 1x/1000 respectively showed strong resistance against ionic interferences (up to 400 mM NaCl). Use of lipid mixture 1 for obtaining highly stable AuNPs also provided functional arms of various lengths which can be used for covalent coupling.
Graphical abstract Agglomeration behavior of gold nanoparticles before and after lipid capping
  相似文献   

19.
Conjugates formed by antibody adsorption to gold nanoparticles (AuNP) have found extensive utilization in immunoassays due to the high surface area and interesting optical and electronic properties of the nanomaterials. Nevertheless, the mechanism of formation of antibody‐AuNP conjugates and their antigen binding characteristics have not been sufficiently explored in terms of specificity and consequent clinical applicability. Dynamic light scattering and related techniques have been successfully employed to detect antigen binding to antibody‐AuNP complexes. Here, a range of different techniques from the bionanotechnology realm have been applied to obtain a detailed picture of a competitive immunoassay for malaria antigen detection, based on fluorescence‐quenching by AuNPs. Both agarose gel electrophoresis and differential centrifugal sedimentation (DCS) analyses provide binding constants in the same order of magnitude, for antibody binding to AuNP and for antigen binding to antibody‐AuNP conjugates. Both techniques are also able to reveal inhibition of antigen binding in the presence of a major blood plasma protein, transferrin (via competitive binding). DCS is further used to show inhibition of the binding of the antigen in the presence of human plasma, a realistic testing condition, of high relevance to the implementation of immunoassays at the clinical level.  相似文献   

20.
Au nanoparticle (AuNP) core particles coated with a poly(N‐isopropylacrylamide) (pNIPAm) shell (Au@pNIPAm) are synthesized by seed mediated free radical polymerization. Subsequently, a temperature–light‐responsive photonic device is fabricated by sandwiching the Au@pNIPAm particles between two thin layers of Au. The optical device exhibits visual color and characteristic multipeak reflectance spectra, where peak position is primarily determined by the distance between two Au layers. Dual responsivities of the photonic device are achieved by combining the photothermal effect of AuNPs core (localized surface plasmon resonance (LSPR) effect) and the temperature responsivity of the pNIPAm shell. That is, the pNIPAm shell collapses as the temperature is increased above pNIPAm's lower critical solution temperature, either by direct heat input or heat generated by AuNPs' LSPR effect. To investigate the effect of AuNPs distribution in the microgels on the devices' photothermal responsivity, the Au@pNIPAm microgel‐based etalon devices are compared with that fabricated by AuNP‐doped pNIPAm‐based microgels; in terms of response kinetics and optical spectrum homogeneity. The uniform Au@pNIPAm microgel‐based devices show a fast response and exhibit a comparatively homogeneous spectrum over the whole slide. These materials can potentially find use in drug delivery systems, active optics, and soft robotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号