首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shell‐isolated nanoparticle‐enhanced Raman spectroscopy (SHINERS) based on Au@SiO2 or Au@Al2O3 nanoparticles (NPs) shows great potential to break the long‐standing limitations of substrate and surface generality of surface‐enhanced Raman scattering (SERS). However, the shell of SiO2 or Al2O3 can easily be dissolved in alkaline media, which limits the applications of SHINERS in alkaline systems. Besides that, the synthesis of Au@SiO2 NPs can be further simplified and Au@Al2O3 NPs be replaced by other NPs that are more amenable for mass production. In an attempt to make SHINERS NPs available in any systems practically, we report the synthesis of ultrathin and compact Au@MnO2 NPs. The shell thickness of MnO2 can be controlled down to about 1.2 nm without any pinhole. SHINERS based on such Au@MnO2 NPs exhibits much higher Raman enhancement effect than Au@SiO2 NPs and can be applied in alkaline systems in which Au@SiO2 or Au@Al2O3 NPs cannot be applied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
杨晶亮  李若平  韩俊鹤  黄明举 《中国物理 B》2016,25(8):83301-083301
We use Au@SiO_2 nanoparticles(NPs) to systematically and comprehensively study the relationship between nanostructure and activity for surface-enhanced Raman scattering. Calculation simulation using the finite different time domain method verifies the experiment results and further reveals that the particle size and the distance between the NPs play vital roles in the surface-enhanced Raman scattering(SERS). Furthermore, in order to better simulate the real experiment, a Au@SiO_2 nanosphere dimer is placed on the silicon substrate and Au substrate, separately. The simulation results show that the large EM field coupling is due to the "hot spots" transferred from the NP–NP gaps to NP–surface of metal gaps,meanwhile, more "hot spots" occur. We also find that the signal intensity strongly depends on the position of the probe molecule. This work provides a better understanding of EM field enhancement.  相似文献   

3.
The use of Au@SiO2 core/shell nanoparticle (NP) assemblage with highly sensitive surface‐enhanced Raman scattering (SERS) was investigated for the determination of glucose and uric acid in this study. Rhodamine 6G dye molecules were used to evaluate the SERS enhancement factor for the synthesized Au@SiO2 core/shell NPs with various silica shell thicknesses. The enhancement of SERS signal from Rhodamine 6G was found to increase with a decrease in the shell thickness. The core/shell assemblage with silica layer of 1–2 nm over a Au NP of ~36 nm showed the highest SERS signal. Our results show that the SERS technique is able to detect glucose and uric acid within wide concentration ranges, i.e. 20 ng/dL to 20 mg/dL (10−12–10−3 M) and 16.8 ng/dL to 2.9 mg/dL (10−11–1.72 × 10−4 M), respectively, with associated lower detection limits of ~20 ng/dL (~1.0 × 10−12 M) and ~16.8 ng/dL (~1.0 × 10−11 M). Our work offers a low‐cost route to the fabrication of agile sensing devices applicable to the monitoring of disease progression. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The recently reported shell‐isolated nanoparticle‐enhanced Raman spectroscopy (SHINERS) is considered as the next generation of advanced spectroscopy for its surface and molecular generality. With the aim to utilize the virtues of shell‐isolated strategy and advance the SHINERS technique, we introduce a silane‐based rapid synthesis method of silica‐coating Au nanorods (Au@SiO2 NRs) with manoeuvrable ultra‐thin shell and tunable SPR. The results demonstrate that the SPR of Au NRs could be optimized to obtain large Raman enhancement using either 633 nm or 785 nm laser. Differing from previously reported Au@SiO2 NRs synthesis method, we can tune the silica shell thickness within several nanometers to maximize the Raman signal while effectively eliminating the exterior interference. And this advanced synthesis method has also significantly reduced the silica‐coating time from one day to ca. 1 h. This method as a new development of SHINERS technique has successfully got enhanced signal in solution Raman tests of malachite green, giving a great potential to be extended to in‐situ measurement for daily life detection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, monodisperse bimetallic nanorods with gold (Au) nanorod core and silver (Ag) shell (Au@AgNRs) were synthesized through seed‐mediated growth process by reduction of AgNO3 using Au nanorods with narrow size and shape distribution as seeds. With increasing the used amount of AgNO3, the Ag shell thickness of their lateral facets is raised faster than that of their two tips, leading to a decrease of their aspect ratios. Four plasmon bands are observable on the extinction spectra of Au@AgNRs, which are attributed to the longitudinal dipolar plasmon mode, transverse dipolar plasmon mode, and octupolar plasmon mode of the core‐shell structured bimetallic nanorods, respectively. As their Ag shell thickness increases, their longitudinal plasmon band blue‐shifts notably with the transverse plasmon band blue‐shifting and the two octupolar plasmon bands red‐shifting slightly, due to the decrease of their aspect ratios and enhancement of Ag plasmon resonance contribution. When used as surface‐enhanced Raman scattering (SERS) substrate for probing minute amounts of 4‐mercaptobenzoic acid in aqueous solution, Au@AgNRs have much stronger SERS activity than Au nanorods, and the obtained Raman signals are highly reproducible arising from their excellent monodispersity. Their SERS activity is remarkably increased with their Ag shell thickness thanks to the enhancing surface electric field and the chemical enhancement associated with electronic ligand effect. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Given the importance of the optical properties of Au and Au/SiO2 core/shell nanoparticles, in this article we focus our attention on the light scattering properties of such systems and on a relative comparison. In particular, we report theoretical results of angle-dependent light scattering intensity and scattering efficiency for Au and Au/SiO2 core/shell nanoparticles increasing the Au particle radius from 30 to 130 nm, and for Au/SiO2 core/shell particles changing the core-to-shell sizes ratio. Finally, a comparison between the scattering efficiency of the Au and Au/SiO2 core/shell nanoparticles is drawn. The results of this work can be used in the design of tunable efficiency light scattering devices (biological and molecular sensors, solar cells).  相似文献   

7.
Benzotriazole (BTAH) is well known as an effective corrosion inhibitor for Cu because of its ability to make a coordination polymer film on the surface that provides a barrier to Cu oxidation. BTA film formation was investigated on single‐crystal and polycrystalline Cu surfaces with shell‐isolated nanoparticle enhanced Raman spectroscopy (SHINERS) using silica‐encapsulated Au nanoparticles. Potential‐dependent spectra display reversible film formation on polycrystalline Cu and irreversible film formation on single‐crystal Cu. Grain boundaries leading to smaller BTA‐Cu oligomers are proposed to be the reason for cathodic degradation of the BTA polymeric films on polycrystalline Cu. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The plasmonic effect is used in nanofluid to help capture and absorb sunlight. The optical absorption is significantly enhanced as plasmonic effect excited. To obtain an enhanced absorption in a broad band, the hybrid plasmonic nanofluid is developed. It is composed of core/shell nanoparticles of different sizes. The overall absorption of hybrid nanofluid is examined. Compared to the nanofluid of single particle size, the hybrid nanofluid exhibits a broadband absorption. As particle size increases, the plasmon resonance peak is shifted to longer wavelength. The variation in the sizes of core/shell nanoparticles can broaden the absorption spectrum. In the near-infrared region, the proportion of different size particles has an obvious influence. With the increase of proportion of larger particles, the absorption band is broadened. Since the suspended nanoparticles have different sizes, the particle distribution in base fluid also has an effect on absorption of light. The large particle in upper has a broadband absorption, however, less energy can be transmitted to lower after the absorption of upper particles. The contribution from the particles in lower is relatively weak.  相似文献   

9.
Tingting Liu 《中国物理 B》2021,30(11):117301-117301
As an ultrasensitive sensing technology, the application of surface enhanced Raman spectroscopy (SERS) is one interesting topic of nano-optics, which has huge application prospectives in plenty of research fields. In recent years, the bottleneck in SERS application could be the fabrication of SERS substrate with excellent enhancement. In this work, a two-dimensional (2D) Ag nanorice film is fabricated by self-assembly method as a SERS substrate. The collected SERS spectra of various molecules on this 2D plasmonic film demonstrate quantitative detection could be performed on this SERS substrate. The experiment data also demonstrate this 2D plasmonic film consisted of anisotropic nanostructures has no obvious SERS polarization dependence. The simulated electric field distribution points out the SERS enhancement comes from the surface plasmon coupling between nanorices. And the SERS signals is dominated by molecules adsorbed at different regions of nanorice surface at various wavelengths, which could be a good near IR SERS substrate for bioanalysis. Our work not only enlarges the surface plasmon properties of metal nanostructure, but also exhibits the good application prospect in SERS related fields.  相似文献   

10.
Water-soluble Mn doped ZnS (ZnS:Mn) nanocrystals synthesized by using 3-mercaptopropionic acid (MPA) as stabilizer were homogeneously coated with a dense silica shell through a multi-step procedure. First, 3-mercaptopropyl triethoxy silane (MPS) was used to replace MPA on the particle surface to form a vitreophilic layer for further silica deposition under optimal experimental conditions. Then a two-step silica deposition was performed to form the final water-soluble ZnS:Mn/SiO2 core/shell nanoparticles. The as-prepared core/shell nanoparticles show little change in fluorescence intensity in a wide range of pH value.  相似文献   

11.
Raman, surface-enhanced Raman scattering, and shell isolated nanoparticles-enhanced Raman scattering techniques were used to study the indigo–nanoparticle interaction nature. Silver nanoparticles were employed with and without a silicon dioxide spacer inert layer. The SERS spectral profile, obtained using silver nanoparticles, is different from the Raman one, which led to the proposition that the indigo–silver interaction is in the range of intermolecular interactions. SERS spectral reproducibility suggests identical organization and orientation of the analyte on the metal surface. The shell isolated nanoparticles enhanced Raman scattering spectrum of indigo, obtained by using silicon dioxide coated silver nanoparticles resulted similar to its Raman spectrum. This result indicates that the indigo structure is chemically unmodified by the silicon dioxide-coated silver surface. From the shell-isolated nanoparticles-enhanced Raman scattering experiments, the electromagnetic mechanism is proposed as the reason for the spectral enhancement. Theoretical calculations allow one to infer both the indigo–silver surface interaction nature and the orientation of indigo on the surface.  相似文献   

12.
Three different shapes of SiC/SiO2 core–shell nanowires were synthesized on Si substrates through a reaction between methane and silica using iron as catalyst. Analysis of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results indicated that catalyst morphology was the key factor for the formation of these three different products. The field emission properties of these three nanowires were investigated. Comparing the field emission results of these three nanowires, we can obtain a conclusion that a vertically well-aligned orientation to the substrate played a very significant role in improving the field emission properties when the emitters are up to a considerable number.  相似文献   

13.
领结形中空表面等离子体波导的传输特性   总被引:1,自引:0,他引:1       下载免费PDF全文
贾智鑫  段欣  吕婷婷  郭亚楠  薛文瑞 《物理学报》2011,60(5):57301-057301
设计了一种领结形中空表面等离子体波导.采用频域有限差分法,对这种波导所支持的基模的能流密度分布、有效折射率、传播长度和模式面积随几何结构参数和工作波长的依赖关系进行了分析.结果表明,沿纵向的能流主要分布在两个上下突起所形成的中间区域.通过调整几何参数及工作波长,可以调节模式的有效折射率、传播长度和模式面积.在工作波长确定的条件下,有效折射率随突起半径的增大呈减小趋势,而传播长度和模式面积则随着突起半径的增大呈增大趋势,四个角上的圆弧半径对波导的传输特性有微调作用,左右扇形区域的半径对波导的传输特性有较明显 关键词: 集成光学 光波导 表面等离子体波导  相似文献   

14.
郭亚楠  薛文瑞  张文梅 《物理学报》2009,58(6):4168-4174
设计了一种双椭圆纳米金属棒表面等离子体波导,采用频域有限差分法,对这种波导所支持的基模的能流密度分布、有效折射率和传播长度随几何结构参数和工作波长的依赖关系进行了分析.结果表明,沿纵向的能流主要分布在两个椭圆金属棒所形成的中间区域,且越靠近金属棒的弧形边,沿纵向的能流越大.通过调节两个金属棒的中心距离以及它们的两个半轴的大小,可以调节模式的有效折射率和传播长度.在工作波长确定的条件下,相对于a=b的情形来说,在a<b时,场与金属表面接触的面积较大,场 关键词: 集成光学 光波导 表面等离子体波导  相似文献   

15.
This paper presents a method for fabricating size-selected nickel nanoparticles coated with oxide shells (shell thickness of about 2 nm). The size of the generated particles was controlled by a low-pressure differential mobility analyzer. The total mass of the deposited particles was estimated on the basis of their measured electric current. A high-resolution transmission electron microscope was used to observe the morphologies of the particles. We successfully synthesized a series of monodispersed (geometric standard deviation <1.2) core–shell particles with oxidized surface layers of 2 nm and analyzed their magnetic properties. PACS 75.50.Te; 75.30.Gw; 75.70.Cn  相似文献   

16.
Synthesis of core @ shell (Au @ Ag) nanoparticle with varying silver composition has been carried out in aqueous poly vinyl alcohol (PVA) matrix. Core gold nanoparticle (~15 nm) has been synthesized through seed-mediated growth process. Synthesis of silver shell with increasing thickness (~1–5 nm) has been done by reducing Ag+ over the gold sol in the presence of mild reducing ascorbic acid. Characterization of Au @ Ag nanoparticles has been done by UV–Vis, High resolution transmission electron microscope (HRTEM) and energy dispersive X-ray (EDX) spectroscopic study. The blue shift of surface plasmon resonance (SPR) band with increasing mole fraction of silver has been interpreted due to dampening of core, i.e. Au SPR by Ag. The dependence of nonlinear optical response of spherical core @ shell nanoparticles has been investigated as a function of relative composition of each metal. Simulation of SPR extinction spectra based on quasi-static theory is done. A comparison of our experimental and the simulated extinction spectra using quasi-static theory of nanoshell suggests that our synthesized bimetallic particles have core @ shell structure rather than bimetallic alloy particles.  相似文献   

17.
Crystalline silicon is the most commonly used material in photovoltaics but has limitations due to its high cost and non-tunable band gap. A new approach of using inexpensive, non-toxic materials with layers that have different band gaps which absorb a wide range of the solar spectrum has the potential to dramatically increase the efficiencies and lower the costs. Core–shell Si–SiO2 nanoparticles are ideally suited for the photovoltaic application and have been synthesised by different groups in an array of sizes allowing for absorption in a wide spectral range. A theoretical investigation of fundamental charge transfer processes in these systems can potentially lead to improved devices. Calculations on a model core–shell interface with the formula Si264O160 which features a silicon layer sandwiched between two SiO2 layers were performed using the Vienna ab initio software package. The Perdew–Burke–Ernzerhof functional in the basis of plane waves was used along with pseudopotentials to simulate electronic structure. The nuclear motion was considered using ab initio molecular dynamics. The density of states, absorption spectrum, partial charge densities, and radiative recombination lifetimes have been calculated. This interface shows quantum confinement behaviour similar to a particle in a box. The role of non-radiative recombination was also determined by relaxation dynamics.  相似文献   

18.
The thermal diffusivity of Au/Ag nanoparticles with core/shell structure, at different compositions (Au/Ag = 3/1, 1/1, 1/3, 1/6), was measured by using the mismatched mode of the dual-beam thermal lens (TL) technique. This study determines the effect of the bimetallic composition on the thermal diffusivity of the nanofluids. In these results we find a lineal increment of the nanofluid it thermal diffusivity when the Ag shell thickness is increased. Our results show that the nanoparticle structure is an important parameter to improve the heat transport in composites and nanofluids. These results could have importance for applications in therapies and photothermal deliberation of drugs. Complementary measurements with UV-vis spectroscopy and TEM, were used to characterize the Au(core)/Ag(shell) nanoparticles.  相似文献   

19.
The magnetic properties of Co-ferrite-doped hydroxyapatite (HAP) nanoparticles of composition Ca10−3xFe2xCox(PO4)6(OH)2 (where x=0, 0.1, 0.2, 0.3, 0.4 and 0.5% mole) are studied. Transmission electron microscope micrograms show that the 90 nm size nanoparticles annealed at 1250 °C have a core/shell structure. Their electron diffraction patterns show that the shell is composed of the hydroxyapatite and the core is composed of the Co-ferrite, CoFe2O4. Electron spin resonance measurements indicate that the Co2+ ions are being substituted into the Ca(1) sites in HAP lattice. X-ray diffraction studies show the formation of impurity phases as higher amounts of the Fe3+/Co2+ ions which are substituted into the HAP host matrix. The presence of two sextets (one for the A-site Fe3+ and the other for the B-site Fe3+) in the Mössbauer spectrum for all the doped samples clearly indicates that the CoFe2O4.cores are in the ferromagnetic state. Evidence of the impurity phases is seen in the appearance of doublet patterns in the Mössbauer spectrums for the heavier-doped (x=0.4 and 0.5) specimens. The decrease in the saturation magnetizations and other magnetic properties of the nanoparticles at the higher doping levels is consistent with some of the Fe3+ and Co2+ which being used to form the CoO and Fe2O3 impurity phase seen in the XRD patterns.  相似文献   

20.
Nanoparticle plasmonics is a rapidly emerging research field that deals with the fabrication and optical characterization of noble metal nanoparticles of various size, shape, structure, and tunable plasmon resonances over VIS-NIR spectral band. The recent simultaneous advances in synthesis, characterization, electromagnetic simulation, and surface functionalization of plasmonic nanoparticles by biospecific molecular probes have led to a perfect publication storm in discoveries and potential biomedical applications of plasmon-resonant nanoparticle bioconjugates. Here, we present an overview of these topics. First, we discus basic wet-chemical routes to fabricate conjugates of gold, silver, or composite particles with controllable size, shape, structure and with surface functionalization by biospecific molecules. Second, we consider the single-particle dipole and multipole optics and coupled plasmonic nanoparticle arrays. Finally, we discus application of plasmonic bioconjugates to such fields as homogeneous and solid-phase assays, biomedical sensing and imaging, biodistribution and toxicity aspects, drug delivery and plasmonic photothermal therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号