首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
水果货架期是影响水果品质的重要因素之一,快速无损检测货架期是消费者、食品加工企业日益关心的问题,为了探讨水果不同货架期的预测判别方法的可行性,以不同货架期脐橙为实验样品,运用高光谱成像技术并结合化学计量学方法对不同货架期脐橙进行了预测判别。分别采集脐橙货架期第0天、第7天、14天后的脐橙样本高光谱图像,并进行高光谱图像校正。从光谱角度,提取脐橙样本的平均光谱,每条光谱有176个波长点;从图像角度,先提取脐橙样本的RGB和HSI颜色空间中R,G,B,H,S和I特征值,得到6个分量的均值,然后提取灰度共生矩阵的能量、熵、对比度、逆差矩、相关性的5个图像纹理信息,一共11个图像特征值,并将图像特征进行归一化处理;结合光谱和图像信息,即176个原始光谱和11个图像信息一共187个特征值。利用光谱信息、图像信息、光谱和图像融合信息进行建模,分别建立偏最小二乘支持向量机(LS-SVM)和偏最小二乘判别(PLS-DA)模型。当原始176个光谱变量作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率为5.33%。当11个图像特征变量作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率较高为20%。当原始176个光谱变量和11个图像特征变量的融合特征作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率为1.33%。实验结果表明,以光谱和图像融合信息建立LS-SVM模型效果最优,提高了对不同货架期脐橙识别的正确率,可实现对不同货架期的脐橙准确有效分类识别,误判率为1.33%。利用高光谱成像技术对不同货架期脐橙进行快速判别,对消费者购买新鲜水果和水果深加工企业具有一定程度的理论指导,也为后期相关仪器研发奠定了基础。  相似文献   

2.
灵武长枣作为宁夏优势特色枣果,具有重要的经济社会价值和科学研究意义。利用可见近红外(Vis/NIR)高光谱成像系统采集60颗完整长枣光谱图像,然后利用损伤装置对60颗完整长枣进行损伤实验,最终得到60颗损伤(内部瘀伤)长枣,高光谱成像系统采集损伤后五个时间段(损伤后2,4,8,12和24 h)长枣的光谱图像。对采集的长枣光谱图像用ENVI软件提取感兴趣(ROI)区域,并计算完整长枣和每个时间段长枣的平均光谱值。原始光谱利用Savitzky-Golay平滑的一阶导数(SG-1)和二阶导数(SG-2)、标准正态变换(SNV)和去趋势(Detrending)、以及SNV-SG-1、SNV-SG-2、Detrending-SG-1、Detrending-SG-2算法进行预处理,原始光谱和预处理光谱建立偏最小二乘判别分析(PLS-DA)分类模型。选择最优的预处理光谱数据,利用连续投影算法(SPA)、间隔随机蛙跳(IRF)、无信息消除变量(UVE)、变量组合集群分析法(VCPA)、区间变量迭代空间收缩法(IVISSA)和IRF-SPA、UVE-SPA、IVISSA-SPA等算法进行特征变量选择,对选择的特征变量建立PLS-DA、线性判别分析(LDA)和支持向量机(SVM)分类判别模型。结果表明,在原始光谱建立的PLS-DA模型中,模型校正集和预测集准确率分别为82.96%和90%。光谱经过预处理后得到SNV-SG-2-PLS-DA为最优分类判别模型,模型校正集和预测集准确率分别为91.11%和96.67%。在特征变量建立的分类模型中,SNV-SG-2-UVE-PLS-DA模型校正集和预测集准确率分别为86.3%和94.44%;SNV-SG-2-SPA-LDA模型校正集和预测集准确率分别为86.3%和83.33%;SNV-SG-2-UVE-SVM模型校正集和预测集准确率分别为77.78%和71.11%。对于分类模型来说线性分类模型(PLS-DA、LDA)分类结果优于非线性分类模型(SVM)分类结果,在线性分类模型结果中PLS-DA优于LDA分类结果,PLS-DA可以更好的提供分类效果。研究表明,利用高光谱结合偏最小二乘判别分析分类模型,可以有效的实现灵武长枣损伤后随时间变化的快速检测,为灵武长枣在线检测提供理论依据。  相似文献   

3.
高光谱图像和叶绿素含量的水稻纹枯病早期检测识别   总被引:1,自引:0,他引:1  
基于高光谱成像技术和化学计量方法,实现了对水稻纹枯病病害的早期检测识别。以幼苗时期的水稻植株为研究对象,对其进行纹枯病病菌侵染,获得染病植株,采集358~1 021 nm波段范围的高光谱图像,三次实验共240个样本,包括染病植株120个样本和健康植株120个样本。根据高光谱图像的光谱维,对染病水稻叶片和健康水稻叶片提取感兴趣区域(ROI),利用感兴趣区域的光谱数据,对其进行Savitzky-Golay(SG)平滑、Savitzky-Golay(SG)一阶求导、Savitzky-Golay(SG)二阶求导、变量标准化(SNV)和多元散射校正(MSC)预处理,建立线性判别分析(LDA)和支持向量机(SVM)分类模型,结果表明:采用SG二阶求导预处理后的线性判别分析(LDA)模型取得了较好的性能,正确识别率在建模集达98.3%,在预测集达95%;利用载荷系数法(x-loading weights, x-LW)对原始光谱和5种预处理的光谱数据进行特征波长提取,然后根据选取的特征波长建立线性判别分析(LDA)和支持向量机(SVM)分类模型,其中采用SG二阶求导预处理后提取的12个特征波长的线性判别分析(LDA)模型取得了较好的性能,其正确识别率在建模集达97.8%,在预测集达95%,而且基于载荷系数法建立的模型性能与全波段相当,可以通过载荷系数法减少数据量对水稻纹枯病病害进行识别;根据高光谱图像的图像维,研究了基于图像主成分分析、基于概率滤波和基于二阶概率滤波的图像特征提取方法,利用提取的特征变量建立反向传播神经网络(BPNN)和支持向量机(SVM)分类模型,其中基于图像主成分分析的反向传播神经网络(BPNN)模型取得了较好的性能,建模集准确识别率达90.6%,预测集的准确识别率达83.3%;根据高光谱图像光谱维和图像维的最优模型,特将叶绿素含量作为建模的另一个特征,分别与光谱特征、图像特征组合,建立反向传播神经网络(BPNN)和线性判别分析(LDA)模型,提出基于光谱特征加叶绿素含量、图像特征加叶绿素含量和光谱、图像特征加叶绿素含量三种组合方式,其中,光谱特征和图像特征分别与叶绿素组合的方式比之前单独的光谱和图像特征建模性能都有所提升,而且三种组合方式中光谱特征加叶绿素含量的反向传播神经网络(BPNN)建模方式取得本研究所有建模方式中较优的性能,其准确识别率在建模集达100%,在预测集达96.7%。以上研究表明,基于高光谱图像和叶绿素含量对水稻纹枯病病害进行早期识别是可行的,为水稻病害的早期识别提供了一种新方法。  相似文献   

4.
可见/近红外高光谱成像技术对鸡蛋种类无损判别   总被引:2,自引:0,他引:2       下载免费PDF全文
利用高光谱技术对鸡蛋种类判别进行研究,为鸡蛋种类无损判别提供科学方法。本研究利用400~1 000 nm高光谱系统采集3种鸡蛋样本的高光谱图像,对原始光谱进行预处理;应用CARS、GAPLS和IRF对预处理后的光谱数据提取特征波长;分别建立基于全光谱和特征波长的KNN和PLS-DA鸡蛋判别模型。结果表明:Detrend法为最优预处理方法;利用CARS、GAPLS和IRF分别选出31、52和71个特征波长;基于IRF提取的特征波长的PLS-DA模型最优,校正集正确率97.02%,预测集正确率85.71%。表明基于高光谱成像技术采集的鸡蛋反射光谱对种类无损判别是可行的。  相似文献   

5.
高光谱图像技术在农产品检测及识别方面有广阔的应用前景。野生黑枸杞经济效益显著,经常被种植黑枸杞冒充。提出一种利用高光谱图像对野生黑枸杞无损快速识别的方法。主要内容和结果如下:(1)共采集256份(野生、种植各128份)黑枸杞在900~1 700 nm范围的高光谱反射光谱,每份平均光谱作为此样品的光谱;(2)采用标准正态变换(SNV)对采集的光谱预处理;基于Kennard-Stone法,按照校正集和预测集比例为2∶1对样品划分,用连续投影算法(SPA)对光谱进行降维处理,提取特征波长30个;分别将全光谱和SPA 提取的30个特征波长作为模型输入,建立支持向量机(SVM)、极限学习机(ELM)和随机森林(RF)识别模型。(3)结果表明,在识别野生黑枸杞模型中,基于全光谱和SPA建立的SVM,ELM和RF模型校正集识别率均高于98.8%,基于全光谱和SPA建立的SVM,ELM和RF模型预测集识别率均高于97.7%。基于全光谱(FS)建立的三种识别模型略优于基于SPA建立的三种识别模型。但从简化模型方面,SPA提取的特征波常数仅为全光谱的11.8%,大大降低了模型运算量。三种模型中,基于随机森林模型无损识别野生黑枸杞效果最好,均达到100%。研究表明,利用高光谱图像技术结合分类模型可快速识别野生黑枸杞。  相似文献   

6.
高光谱成像的柑橘病虫害叶片识别方法   总被引:1,自引:0,他引:1  
为监测柑橘生长状况,实现病虫害无损识别,利用高光谱成像技术和机器学习方法进行柑橘病叶分类研究。使用高光谱成像仪采集46片柑橘正常叶、46片溃疡病叶、80片除草剂危害叶、51片红蜘蛛叶和98片煤烟病叶的高光谱图像,在478~900 nm光谱范围内对每个叶片一个或多个发病区提取5×5的感兴趣区域(ROI),将ROI内每个像素的反射率值作为光谱信息,则一个ROI得到25个光谱信息样本,最终五类叶片共得到13250个光谱样本。利用随机法将全部样本划分为9 938个训练集和3 312个测试集。分别采用一阶求导(1stDer)、多元散射校正(MSC)和标准正态变换(SNV)三种方法对原始光谱信息进行预处理,对不同预处理方法后的数据采用主成分分析法(PCA)提取特征波长。1st Der预处理后得到7个特征波长,分别是520.2,689.0,704.8,715.4,731.2,741.8和757.6 nm;MSC和SNV预处理后得到7个相同的特征波长,分别是551.9,678.5,704.8,710.1,725.9,731.2和757.6 nm;原始光谱得到7个特征波长,分别是525.5,678.5,710.1,720.7,725.9,757.6和762.9 nm。分析PCA后的样本分布散点图可知,正常叶片、溃疡病叶片和红蜘蛛叶片样本有一定程度聚类,除草剂叶片和煤烟病叶片样本有大量重叠,仅依据PCA不能完成病虫害叶片的识别。对全波段(FS)和PCA特征波长数据在不同预处理方法下进行支持向量机(SVM)和随机森林(RF)建模,结果表明:数据在1stDer预处理方法下识别效果最佳,1st Der-FS-SVM模型总分类精度(OA)为95.98%,Kappa系数为0.948 2,1st Der-FS-RF模型OA为91.42%,Kappa系数为0.889 2,1stDer-PCA-SVM模型OA为90.82%,Kappa系数为0.881 6,1stDer-PCA-RF模型的OA为91.79%,Kappa系数为0.894;对PCA选择的特征波长数据建模,SVM和RF模型下识别率均达到84%,全波段下模型识别率在88%以上,FS数据建模效果优于PCA特征波长。研究结果表明,高光谱成像技术结合机器学习方法进行柑橘叶片分类是可行且有效的,为柑橘病虫害的无损准确识别提供理论根据。  相似文献   

7.
可见近红外高光谱成像对灵武长枣定量损伤等级判别   总被引:1,自引:0,他引:1  
利用可见近红外(Vis-NIR)高光谱成像技术对完好和损伤等级灵武长枣进行快速识别检测。采用定量损伤装置得到损伤Ⅰ,Ⅱ,Ⅲ,Ⅳ和Ⅴ级的灵武长枣,借助高光谱成像系统采集完好长枣和损伤长枣样本高光谱图像。提取感兴趣区域(region of interest,ROI)并计算样本平均光谱值。利用光谱-理化值共生距离算法(SPXY)将420个长枣样本按3∶1的比例划分校正集315个和预测集105个。灵武长枣原始光谱建立偏最小二乘判别分析(PLS-DA)分类模型,得到校正集和预测集准确率分别为72.70%和86.67%;灵武长枣原始光谱数据采用移动平均(MA)、卷积平滑(SG)、多元散射校正(MSC)、正交信号修正(OSC)、基线校准(baseline)和去趋势(de-trending)等方法进行光谱预处理并建立PLS-DA分类判别模型。通过分析比较,得到MSC-PLS-DA为最优分类判别模型,校正集准确率为76.19%,预测集准确率为86.67%,其中校正集比原始光谱建模准确率提高了3.49%,预测集准确率较原始光谱建模结果未提高;为了提高建模效果,对灵武长枣原始光谱和预处理后的光谱分别采用连续投影算法(SPA)、无信息变量消除(UVE)、竞争性自适应加权抽样(CARS)和区间变量迭代空间收缩法(iVISSA)等算法提取特征波长,建立PLS-DA分类判别模型,结果表明,MSC-CARS-PLS-DA为最优模型组合,校正集准确率为77.14%,预测集准确率为89.52%,建模准确率较原始光谱建模准确率分别提高了4.44%和2.85%。结果表明,Vis-NIR高光谱成像技术结合MSC-CARS-PLS-DA模型可实现灵武长枣损伤等级的快速识别。  相似文献   

8.
基于NIRS技术的食用醋品牌溯源研究   总被引:2,自引:0,他引:2  
以四种品牌152组食用醋样品为研究对象,采用漫反射与透射两种近红外光谱采集模式分别进行光谱数据采集,并以此建立了食用醋品牌溯源模型,重点考察光谱采集模式、光谱预处理方法等对溯源模型精度的影响。结果表明,选取114组样品为训练集,原始光谱数据经过多元散射校正、二阶求导预处理后,采用偏最小二乘判别分析法(PLS1-DA)建立的食用醋NIRS品牌溯源模型,对38组测试集样品进行预测,透射光谱模型的决定系数(R2)、校准均方根误差(root-mean-square error of calibration, RMSEC)、预测均方根误差(root-mean-square error of prediction, RMSEP)分别为0.92,0.113,0.127,正确识别率为76.32%;漫反射光谱模型R2,RMSEC,RMSEP分别为0.97,0.102,0.119,正确识别率为86.84%。由此说明,近红外光谱结合PLS1-DA可以用来建立食用醋品牌溯源模型,且漫反射光谱模型预测效果更好。  相似文献   

9.
高光谱图像包含了大量的光谱信息和图像信息,采用高光谱成像技术对牛肉品种进行识别。获取可见-近红外(400~1000 nm)光谱范围内的安格斯牛、利木赞牛、秦川牛、西门塔尔牛、荷斯坦奶牛五个品种共252个牛肉样本的高光谱图像。在ENVI软件中对高光谱图像进行阈值分割并构建掩膜图像,获取样本的感兴趣区域(ROI),并结合伪彩色图对牛肉样本的反射率指数进行可视化表达;采用Kennard-Stone(KS)法对样本集进行划分以提高模型的预测性能;对原始光谱采用卷积平滑(SG)、区域归一化(Area normalize)、基线校正(Baseline)、一阶导数(FD)、标准正态变量变换(SNV)及多元散射校正(MSC)等6种方法进行预处理;采用竞争性自适应重加权算法(CARS)提取特征波长。然后利用颜色矩对不同牛肉样本的颜色特征进行提取;对原始光谱图像进行主成分分析,结合灰度共生矩阵(GLCM)算法,提取主要纹理特征。最后结合偏最小二乘判别(PLS-DA)算法建立牛肉样本基于特征波长、颜色特征以及纹理特征的识别模型。KS法将牛肉样本划分为校正集190个,预测集62个;将未经预处理的光谱数据与经过6种不用预处理的光谱数据进行建模分析,结果发现经FD法处理后的光谱数据所建模型的识别率最高;结合CARS法对经FD法预处理后的光谱数据进行特征波长提取,共提取出22个波长;利用颜色矩和GLCM算法分别提取出每个牛肉样本的9个颜色特征、48个纹理特征。将特征波长数据与颜色、纹理特征信息进行融合建模,结果表明,基于特征光谱+纹理特征的模型识别效果最佳,其校正集与预测集识别率分别为98.42%和93.55%,均高于特征光谱数据模型识别率,说明融合纹理特征后使样本分类信息的表达更加全面;融合颜色特征后模型的校正集识别率均有所增加,但预测集识别率稍逊,颜色特征虽携带了部分有效信息,但这些信息与牛肉样本的相关性不大。因此,寻找与牛肉样本相关性更大的颜色特征是提高模型识别率的重要途径之一。该研究结果为牛肉品种的快速无损识别提供了一定的参考。  相似文献   

10.
开展种子品种的识别研究是保证种子质量的重要手段。利用高光谱图像技术融合图像特征信息对脱绒棉种的品种进行判别分析。采集4个品种共240粒脱绒棉种样本的高光谱图像数据(400~1 000 nm),提取样本的光谱信息及长、宽、面积、圆形度、等12个形态特征。采用连续投影算法(SPA)选出11个特征波段作为输入结合偏最小二乘判别分析法(PLS-DA)、软独立模式识别法(SIMCA)、最邻近节点算法(KNN)、主成分分析结合线性判别(PCA-LDA)及二次判别(PCA-QDA)进行建模分析,得出PLS-DA建模集和预测集的总体识别率分别为93%和90%。利用图像信息进行建模分析,模型整体的识别率均不高,说明单独使用高光谱图像的形态特征进行分类效果不佳。将特征波段的光谱和形态特征信息进行融合作为输入,建立基于PLS-DA,SIMCA,KNN,PCA-LDA及PCA-QDA的信息融合模型,其精度均比基于光谱或形态信息模型高,其中PLS-DA模型识别效果最好,建模集和预测集总体识别率分别为98%和97%。表明融合高光谱图像的光谱与图像信息可以在少量波段情况下有效的提高脱绒棉种品种的分类检测精度。  相似文献   

11.
正常、缺素和黄龙病柑桔叶片高光谱成像快速诊断   总被引:1,自引:0,他引:1  
应用高光谱成像技术,结合峰值比判别法和偏最小二乘判别法,探讨快速无损诊断正常、缺素和黄龙病柑桔叶片的可行性。在374.28~1 016.89nm可见近红外光谱范围内,采集了正常、缺素和黄龙病柑桔叶片的高光谱数据。以主叶脉为轴线,两侧各选一个长约60像素、宽约30像素的椭圆形感兴趣区域。提取两个感兴趣区域的平均反射率光谱,经相关分析,筛选出502.79和374.28nm一对特征波长,建立了正常叶片的峰值比判别模型,模型误判率为1.7%,但该模型无法区分缺素和黄龙病叶片。采用二阶导数结合平滑光谱预处理方法,处理反射率光谱,建立了缺素和黄龙病叶片偏最小二乘判别模型。采用留一法交互验证确定最佳主成分因子数为17,建模相关系数为0.96,建模标准差为0.13,模型对两类叶片分类正确率都达到了100%。在此基础上,提出了峰值比判别模型和偏最小二乘判别模型相结合的不同类别叶片二步快速诊断法。采用未参与建模的正常、缺素和黄龙病叶片各10片,评价模型的分类能力,模型分类正确率达到了96.7%。实验结果表明:应用高光谱成像技术,结合由峰值比判别模型和偏最小二乘判别模型构成的二步判别法,快速识别正常、缺素和黄龙病柑桔叶片是可行的。  相似文献   

12.
基于近地高光谱成像技术结合化学计量学方法,实现了黑豆品种的鉴别。实验以三种不同颜色豆芯的黑豆为研究对象,采用高光谱成像系统采集380~1 030 nm波段范围的高光谱图像,提取高光谱图像中的样本感兴趣区域平均光谱信息作为样本的光谱进行分析,建立黑豆品种的判别分析模型。共采集180个黑豆样本的180条平均光谱曲线。剔除明显噪声部分之后以440~943 nm范围光谱为黑豆样本的光谱,采用多元散射校正(multiplicative scatter correction,MSC)对光谱曲线进行预处理。分别以全部光谱数据、主成分分析(principal component analysis,PCA)提取的光谱特征信息、小波分析(wavelet transform,WT)提取的光谱特征信息建立了偏最小二乘判别分析法(partial least squares discriminant analysis,PLS-DA),簇类独立模式识别法(soft independent modeling of class analogy,SIMCA),最邻近节点算法(K-nearest neighbor algorithm,KNN),支持向量机(support vector machine,SVM), 极限学习机(extreme learning machine,ELM)等判别分析模型。以全谱的判别分析模型中,ELM模型效果最优;以PCA提取的光谱特征信息建立的模型中,ELM模型也取得了最优的效果;以WT提取的光谱特征信息建立的模型中,ELM模型结识别效果最好,建模集和预测集识别正确率达到100%。在所有的判别分析模型中,WT-ELM模型取得了最优的识别效果。实验结果表明以高光谱成像技术对黑豆品种进行无损鉴别是可行的,且WT用于提取光谱特征信息以及ELM模型用于判别黑豆品种能取得较好的效果。  相似文献   

13.
Liu Zhang 《光谱学快报》2013,46(6):356-366
Abstract

Nondestructive identification of wheat grains in different states plays an important role in improving the quality of wheat products. This study investigated the possibility of using hyperspectral imaging techniques to discriminate healthy wheat grain, germinated wheat grain, mildewed wheat grain, and shriveled wheat grain (wheat grain infected with fusarium head blight). Both sides of individual wheat kernels were subjected to hyperspectral imaging (866.4–1701.0?nm) to acquire hyperspectral cube data. Spectral data were preprocessed by using standardization and multiple scattering correction. In addition, the principal component loading method was used to extract the characteristic wavelengths of both sides of wheat grains. The sample is divided into calibration set, test set, and validation set. The data of the calibration set are used to train the partial least squares discriminant analysis model, K-nearest neighbor model, and the support vector machine model, and the test set data are used to test the model. The results show that spectral data of both sides can achieve good classification results, while the reverse spectral data perform better. By comparing with each other, the support vector machine model is selected as the best classification model. Finally, using two hyperspectral images (reverse side) that are not involved in training and testing to verify the accuracy of the established support vector machine model, and the classification effect maps of the four wheat grains were visualized. The results indicate that nondestructive classification of wheat grains in different states is feasible based on hyperspectral imaging technology.  相似文献   

14.
近红外高光谱成像技术用于转基因大豆快速无损鉴别研究   总被引:1,自引:0,他引:1  
以近红外高光谱成像技术,结合化学计量学方法,研究了转基因大豆的快速、无损检测方法。实验以3种不同非转基因亲本(HC6, JACK, TL1)及其转基因大豆作为研究对象。采用高光谱成像系统采集874~1 734 nm波长范围的256个波段范围的高光谱图像,提取大豆的光谱信息,剔除明显噪声部分后,采用Moving Average(MA)平滑预处理的941~1 646 nm范围光谱数据进行分析。采用偏最小二乘判别分析算法(partial least squares-discriminant analysis, PLS-DA),对3种非转基因亲本大豆建立模型进行判别分析,其相应的建模集和预测集的判别正确率分别为97.50%和100%,100%和100%,96.25%和92.50%,结果表明,高光谱成像技术可用于非转基因大豆的识别。对非转基因亲本及其转基因大豆进行判别分析,基于全谱,3种的建模集和预测集的判别正确率分别为99.17%和99.17%,87.19%和81.25%,99.17%和98.33%;以x-loading weights提取非转基因亲本及其转基因大豆判别分析的特征波长并建立PLS-DA模型,3种的建模集和预测集的判别正确率分别为72.50%和80%,80.63%和79.38%,85%和85%,该结果表明非转基因亲本与转基因品种的判别分析是可行的,特征波长的选择也可用于非转基因亲本与转基因品种的判别分析。研究表明采用近红外高光谱成像技术对非转基因大豆、非转基因亲本及其转基因大豆进行鉴别是可行的,为转基因大豆的快速无损准确鉴别提供了一种新方法。  相似文献   

15.
基于高光谱图像和判别分析的草地早熟禾品种识别研究   总被引:1,自引:0,他引:1  
利用高光谱成像技术(550~1 000nm),采集了6个草地早熟禾品种新鲜叶片的高光谱图像,提取了叶片的光谱信息,运用Wilks’Lambda逐步判别分析法,从94个波段中选择了9个特征波段,根据特征波段的光谱信息,采用Fisher线性判别法,构建草地早熟禾品种的判别分析模型。结果表明,选择3个、6个和9个波段组合,对120个训练样本的识别正确率分别为98.3%,100%和100%,对60个测试样本的识别正确率分别为83.3%,96.7%和100%,说明以9个特征波段的光谱信息构建的草地早熟禾品种判别模型是合适的,利用高光谱成像技术结合判别分析法,为快速识别草地早熟禾品种提供了一种新的方法。  相似文献   

16.
影响柑橘生长的病虫药害种类繁多,目前的检测方法大多针对单一病症,开发基于高光谱成像和机器学习的多种类柑橘病虫药害叶片快速精准检测方法,对果园精准施药和柑橘产业健康发展具有重要意义。以果园自然发病的柑橘叶片为研究对象,包括柑橘正常叶(50片)、溃疡病叶(50片)、煤烟病叶(103片)、缺素病叶(60片)、红蜘蛛叶(56片)和除草剂危害叶(85片),采集350~1 050 nm波段内的高光谱数据。分别利用一阶求导(1stDer)、多元散射校正(MSC)和中值滤波(MF)方法对原始(Origin)高光谱数据进行预处理,对预处理后的高光谱数据采用主成分分析(PCA)和竞争性自适应重加权(CARS)算法提取特征波长,CARS降维得到的特征波长分别为10个、 5个、 12个和10个,4组PCA提取的特征波长均为7个,两种方法所得特征波长范围都集中在700~760 nm波段内。对全波段(FS)使用极限梯度提升树(XGBoost)算法,特征波长使用支持向量机(SVM)建立柑橘病叶多分类模型。采用XGBoost建立的检测识别模型有Origin-FS-XGBoost, 1s...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号