首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes [Zn2(HL1)2(CH3COO)2] (1) and [Zn2(L2)2] (2) were synthesized with salicylaldehyde semicarbazone (H2L1) and salicylaldehyde-4-chlorobenzoyl hydrazone (H2LASSBio-1064, H2L2), respectively. The crystal structure of (1) was determined. Upon recrystallization of previously prepared [Zn2(HL2)2(Cl)2] (3) in 1:9 DMSO:acetone crystals of [Zn2(L2)2(H2O)2]·[Zn2(L2)2(DMSO)4] (3a) were obtained. The crystal structure of 3a was also determined. All crystal structures revealed the presence of phenoxo-bridged binuclear zinc(II) complexes.  相似文献   

2.
《Polyhedron》2002,21(9-10):963-967
Interaction of cobalt(II) ions and sodium carbacylamidophosphates Na(L) (HL=PhC(O)NHP(O)(NR2)2; where NR2 are morpholyl, HL1; NMe2, HL2; NEt2, HL3) in methanol solution afforded polynuclear alkoxo complexes [Co4{L1}3(OCH3)4(OH)(H2O)5·3H2O] 1 and [Co4{L}4(OCH3)4(CH3OH)4] (L=L2 2, L3 3). Data of spectral and TGA studies are presented. Coordination compounds 1 and 3 have been characterized by means of X-ray diffraction. Both the structures consist of tetranuclear cubane alkoxo clusters with methoxide ions bridging three metal centers (CoO 2.068(3)–2.093(4) Å) and phosphorylic ligands coordinated in a bidentatechelate fashion via the carbonyl oxygen atoms (CoO 1: 2.050(2); 3: 2.031(4) Å) and the phosphoryl groups (2.093(2) and 2.106(4) Å). Isolation of these cubane alkoxo complexes is an important proof for close resemblance in behavior of carbacylamidophosphate systems and β-diketonates towards transition metal ions.  相似文献   

3.
Three new mono–di–trinuclear cobalt complexes of three different Schiff bases have been synthesised. In all the three complexes psuedohalides (NCO and N3) have been incorporated to generate structural variation. Of the three Schiff bases, HL1 and HL2 were obtained by selective condensation of two different 1,3-diamines with 2-hydroxyacetophenone and H2L3 resulted from non-selective condensation of 1,3-diamine with 2-hydroxyacetophenone. Only one –NH2 functionality of 1,3-diaminopropane and 1,3-diaminopentane was selectively condensed with 2-hydroxyacetophenone to generate Schiff bases HL1 and HL2, respectively. H2L3 was obtained by condensing both the amine functionality of 1,3-diaminopropane with 2-hydroxyacetophenone. Therefore HL1 and HL2 behave as a N2O donors, whereas H2L3 provides a N2O2 donor coordination environment for the cobalt ions in the respective complexes. In [Co(L1)2]2 [Co(NCO)4] (1) the asymmetric unit comprises of five mononuclear cobalt centers, [Co2(μ–N3)2(L2)2(N3)2] (2) is a dinuclear and [(H2O)2Co(μ–N3)2(μ–L3)2Co2(N3)1.25(CH3O)0.75] · H2O (3) is a trinuclear cobalt species. The three complexes have been characterised using IR, UV–Vis spectroscopy and cyclic voltammetry. Structural aspects of 1, 2 and 3 have been described by performing single crystal X-ray analysis. EPR analyses of 1 and 3, and DNA binding abilities of all three cobalt complexes have been studied in detail.  相似文献   

4.
Novel mononuclear oxovanadium(IV) and manganese(III) complexes [VO(L1)2·H2O] (1); [VO(L2)2·H2O] (2); [VO(L3)2·H2O] (3); [Mn(L1)2]ClO4·H2O (4); [Mn(L2)2] ClO4·H2O (5); [Mn(L3)2]ClO4·H2O (6) were prepared by condensation of 1 mol of VOSO4·5H2O or Mn(OAc)3· 2H2O with 2 mol of ligand HL1, HL2 or HL3 (where HL1 = 4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2- phenyl-2,4-dihydro-pyrazol-3-one; HL2=4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2-p-tolyl-2,4-dihydro-pyrazol-3-one; HL3=4-{4-[(2-hydroxy-ethyl-amino)-methyl]-3-methyl-5-oxo-4,5-dihydropyrazol-1-yl} benzene sulfonic acid). The resulting complexes were characterized by elemental analyses, molar conductance, magnetic and decomposition temperature measurements, electron spin resonance, FAB mass, IR and electronic spectral studies. From TGA, DTA and DSC, the thermal behaviour and degradation kinetic were studied. Electronic spectra and magnetic susceptibility measurements indicate distorted octahedral stereochemistry of oxovanadium(IV) complexes and regular octahedral stereochemistry of manganese(III) complexes. Hamiltonian and bonding parameters found from ESR spectra indicate the metal ligand bonding is partial covalent. The X-ray single crystal determination of one of the representative ligand was carried out which suggests existence of amine-one tautomeric form in the solid state. The 1H-NMR spectra support the existence of imine-ol form in solution state. The LC-MS studies sustain the1H-NMR result. The electronic structure of the same representative ligand was optimized using 6-311G basis set at HF level ab initio studies to predict the coordinating atoms of the ligand.  相似文献   

5.
Four complexes: [Bu2(L1)SnOSn(L1)Bu2]2 (1), [Bu2(L2)SnOSn(L2)Bu2]2 (2), [Bu2(L3)SnOSn(L3)Bu2]2 (3), and [Bu2(L4)SnOSn(L4)Bu2]2 (4), (HL1 = 2-(4-methylbenzoyl)benzoic acid, HL2 = 2-(2,4-diethylbenzoyl)benzoic acid, HL3 = 2-(4-chlorobenzoyl)benzoic acid, HL4 = 2-(4-isopropylbenzoyl)benzoic acid) have been prepared and structurally characterized by means of elemental analysis and vibrational, 1H NMR and FT-IR spectroscopies. The crystal structures of all complexes have been determined by X-ray crystallography. Three distannoxane rings are present to the dimeric tetraorganodistannoxane of planar ladder arrangement. Each structure is centro-symmetric and features a central rhombus Sn2O2 unit with two additional tin atoms linked at the O atoms. Complex 1 exhibited good antibacterial and antitumor activities and have a potential to be used as drugs.  相似文献   

6.
Nickel(II) complexes of quinoline-2-carbaldehyde N(4),N(4)-(butane-1,4-diyl) thiosemicarbazone (HL1) and 2-benzoylpyridine N(4),N(4)-(butane-1,4-diyl) thiosemicarbazone (HL2) have been synthesized and physico-chemically characterized by means of partial elemental analyses, molar conductance measurements, magnetic measurements, electronic and infrared spectral studies. Three complexes were given the formulae [Ni(HL1)2]Cl2 (1), [Ni(HL2)L2]ClO4 · 7H2O (2) and [NiL2Cl] · 0.5H2O (3). The structure of compound 1 has been solved by single crystal X-ray crystallography and is found to be distorted octahedral. Compound 2, when crystallized in DMSO solution, got deprotonated to form a new compound [Ni(L2)2] (2a), with a distorted octahedral Ni(II) center. In compound 1, HL1 coordinates to the metal in the thione form, while in compounds 2a and 3, HL2 coordinates in its deprotonated thiolate form.  相似文献   

7.
Two tridentate N,N,O donor Schiff bases, HL1 (4-(2-ethylamino-ethylimino)-pentan-2-one) and HL2 (3-(2-amino-propylimino)-1-phenyl-butan-1-one) on reaction with CuII acetate in presence of triethyl amine yielded two basal-apical, mono-atomic acetate oxygen-bridging dimeric copper(II) complexes, [Cu2L12(OAc)2] (1), [Cu2L22(OAc)2] (2). Whereas two other similar tridentate ligands HL3 (4-(2-amino-propylimino)-pentane-2-one) and HL4 (3-(2-amino-ethylimino)-1-phenyl-butan-1-one) under the same conditions produced a mixture of the corresponding dimers and a one-dimensional alternating chain of the dimer and copper acetate moiety, [Cu4L32(OAc)6]n (3) and [Cu4L42(OAc)6]n (4), formed by a very rare μ3 bridging mode of the acetate ion. All four complexes (14) have been characterized by X-ray crystallography. The isotropic Hamiltonian, H = −JS1S2 has been used to interpret the magnetic data. Magnetic measurements of 1 and 2 in the temperature range 2–300 K reveal a very weak antiferromagnetic coupling for both complexes (J = −0.56 and −1.19 cm−1 for 1 and 2, respectively).  相似文献   

8.
A novel 5-Acetoxy-1-(6-chloropyridin-2-yl)-1H-pyrazole-3-carboxylic acid methyl ester derivatives Htcdodtta (1), and it’s five complexes, [Cu2(L1)2]·(CH3CN) (2), [Cu2(L2)1.63(L3)0.37]·(CH3OH)0.5 (3), [Cu2(L3)(L4)]·(C2H5OH)0.5·(CH3OH)0.5 (4), [Cu2(L4)(L5)]·(H2O) (5) and [Cu2(L1)1.18(L2)0.82] (6) have been synthesized. The Htcdodtta, HL1-HL5 were formed in-situ reaction. HL1-HL5 are homologues which possess two chiral carbons. Compounds 16 were characterized using single-crystal X-ray diffraction, IR, and elemental analysis. Compounds 26 are dinuclear copper complexes. The in vitro cytotoxicities of compounds 14 against a variety of cell lines were evaluated by MTT assays. Hela cancer cell apoptosis assay of 1 and 2 were examined by flow cytometry. The cell apoptosis in NP69, A549, Capan-2, Hela, HepG2, and HUVECs cell lines induced by compound 2 was further affirmed by cellular morphology observations.  相似文献   

9.
Nickel(II) complexes with 2,3-dihydroxybenzaldehyde N4-substituted thiosemicarbazone ligands (H3L1–H3L4) have been synthesized and characterized with the aim of evaluating the effect of N4 substitution in the thiosemicarbazone moiety on their coordination behavior and biological activities. Two series of nickel(II) complexes with the general formulae [Ni(H3L)(H2L)]ClO4 and [Ni2(HL)2] were characterized by analytical and spectral techniques. The molecular structure of one of the complexes, namely, [Ni(H3L4)(H2L4)]ClO4 was established by single crystal X-ray diffraction studies. The crystal structure of this complex revealed that two H3L4 ligands are coordinated to nickel(II) in different modes; one as a neutral tridentate ONS ligand and the other is as a monoanionic tridentate (ONS?) ligand. The antimicrobial activities of the compounds were tested against 25 bacterial strains via the disc diffusion method, and their minimum inhibitory concentration (MIC) and minimum microbicidal concentration were evaluated using microdilution methods. With a few exceptions, most of the compounds exhibited low-to-moderate inhibitory activities against the tested bacterial strains. However, the complexes [Ni2(HL3)2] (7) and [Ni2(HL4)2] (8) indicated higher inhibitory activity against Salmonella enterica ATCC 9068 (MIC values 15.7 and <15.7 μg/ml, respectively), compared with gentamicin as the positive control (MIC 25 μg/ml). Complex (7) also inhibited Streptococcus pneumoniae more efficiently (MIC 31.2 μg/ml), compared with gentamicin (MIC > 50 μg/ml). The toxicities of the compounds were tested on brine shrimp (Artemia salina), where no meaningful toxicity level was noted for both the free ligands and the complexes. The cytotoxicities of the compounds on cell viability were determined on MCF7, PC3, A375, and H413 cancer cells in terms of IC50; complexes [Ni(H3L3)(H2L3)]ClO4 (3), [Ni2(HL3)2] (7) and [Ni2(HL4)2] (8) exhibited significant cytotoxicity on the tested cell lines.  相似文献   

10.
Three complexes containing hexachlorodicuprate(II) anions and protonated 4-azafluorenone derivatives as counterions were isolated. The crystal and molecular structures of 4-azafluoren-9-one, (HL1)2[{CuCl2(H2O)}2(μ-Cl)2] · 2H2O (L1), and spectral characteristics of the complexes were determined. Relationships relating the degree of distortion of the crystal structure of the hexachlorodicuprate(II) anions to the spectral characteristics of the compounds were proposed on the basis of the experimental and published data.  相似文献   

11.
Novel optical ligands bis(menthane) (H2L1), pinano-para-menthane (H2L2), and carano-para-menthane (H2L3) propylenediaminodioximes are obtained. Diamagentic Co(III) complexes of the composition Co(HL1)Cl2 (I), Co(HL2)Cl2 (II), Co(HL3)Cl2 (III), and Co(HL4)Cl2 · H2O(IV) are synthesized by reactions of CoCl2 with H2L1, H2L2, H2L3 and bis(carane) propylenediaminodioxime (H2L4) in ethanol in air. The crystal and molecular structures of compound I is determined by X-ray diffraction analysis. The crystals are monoclinic with the unit cell parameters a = 7.8385(3) Å, b = 11.4074(6) Å, c = 14.9509(6) Å, β = 104.278(2)°, V = 1295.57(10) Å3, Z = 2, ρ(calcd) = 1.367 g/cm3, F(000) = 564, M = 533.41, space group P21. The crystal structure of complex I consists of individual mononuclear molecules. The Co3+ ion coordinates four N atoms of tetradentate cycle-forming anionic ligand and two Cl atoms. The coordination polyhedron of Cl2N4 is a distorted octahedron. The 13C and 1H NMR spectra of the complexes synthesized confirm coordination of four N atoms of a ligand.  相似文献   

12.
在不同反应条件下反应得到了两种1,2,3-三唑衍生物的配合物[Co(H2O)6][Co(L13]2·4H2O(1)和Cu(L222)(HL1=5-methyl-1-phenyl-1H-1,2,3-triazole-4-carboxylic acid;HL2=1-(4-iodophenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylic acid)。通过X射线单晶衍射和红外光谱确定了晶体结构,同时对配合物12进行了表面作用分析(Hirshfeld surface analysis),在二维指纹图谱中可以清楚的看到配合物中的主要分子间作用。  相似文献   

13.
It was established that the reactions of pyrazol-3-yl-substituted nitronyl nitroxide (HL1) and pyrazol-3-yl-substituted imino nitroxide (HL3) with Cu(II) acetate lead to self-assembly of the Cu4(OH)2(OAc)4(DMF)2(L1)2 tetranuclear and Cu2(OAc)2(H2O)2(L3)2 dinuclear complexes, respectively. The reaction of Cu(II) acetate with 5-ethoxycarbonyl-pyrazol-3-yl-substituted nitronyl nitroxide (HL2) gave unexpected solid Cu2(H2O)2(L6)2 · 2DMF, in which L6 is a deprotonated 5-carboxy-pyrazol-3-yl-substituted nitronyl nitroxide, formed as a result of cleavage of an ester bond in the starting HL2. A similar transformation of the paramagnetic ligand was observed in the reaction of Cu(II) acetate with 5-ethoxycarbonyl-pyrazol-3-yl-substituted imino nitroxide (HL4). It led to the formation of Cu2(DMF)2(L7)2, where L7 is deprotonated 2-(5-carboxy-1H-pyrazol-3-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide. An X-ray diffraction study indicated that in Cu4(OH)2(OAc)4(DMF)2(L1)2 and Cu2(OAc)2(H2O)2(L3)2, the L1 and L3 paramagnetic ligands perform the bridging cyclic tridentate function, while in Cu2(H2O)2(L6)2 · 2DMF and Cu2(DMF)2(L7)2, the paramagnetic L6 and diamagnetic L7 are bridging bicyclic tetradentate ligands. The magnetic behavior of complexes with coordinated nitronyl nitroxide – Cu4(OH)2(OAc)4(DMF)2(L1)2 and Cu2(H2O)2(L6)2 · 2DMF is dictated by the dominant antiferromagnetic exchange interactions, which is confirmed by quantum-chemical data. The magnetic susceptibility of Cu2(OAc)2(H2O)2(L3)2 reflects the competition between the antiferromagnetic and ferromagnetic components, of which the latter is due to electron coupling in the Cu(II) ← N=C–N ? O exchange channels. EPR data confirm the results received from static magnetic measurements for multispin solids.  相似文献   

14.
The synthesis and characterization of new transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 3‐(2‐hydroxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL1 ) and 3‐(2‐hydroxy‐3‐carboxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL2 ) have been carried out. Their structures were confirmed by elemental analyses, thermal analyses, spectral and magnetic data. The IR and 1H NMR spectra indicated that HL1 and HL2 coordinated to the metal ions as bidentate monobasic ligands via the hydroxyl O and azo N atoms. The UV‐Vis, ESR spectra and magnetic moment data revealed the formation of octahedral complexes [Mn L1 (AcO)(H2O)3] ( 1 ), [Co L1 (AcO)(H2O)3]·H2O ( 2 ), [Mn L2 (AcO)(H2O)3] ( 6 ) and [Co L2 (AcO)(H2O)3] ( 7 ), [Ni L1 (AcO)(H2O)] ( 3 ), [Zn L1 (AcO)(H2O)]·H2O ( 5 ), [Ni L2 (AcO)(H2O)] ( 8 ), [Zn L2 (AcO)(H2O)]·10H2O ( 10 ) have tetrahedral geometry, whereas [Cu L1 (AcO)(H2O)2] ( 4 ) and [Cu L2 (AcO)(H2O)2]·5H2O ( 9 ) have square pyramidal geometry.. The mass spectra of the complexes under EI‐con‐ ditions showed the highest peaks corresponding to their molecular weights, based on the atomic weights of 55Mn, 59Co, 58Ni, 63Cu and 64Zn isotopes; besides, other peaks containing other isotopes distribution of the metal. Kinetic and thermodynamic parameters of the thermal decomposition stages were computed from the thermal data using Coats‐Redfern method. HL2 and complexes 6 – 10 were found to have moderate antimicrobial activities against Staphylococcus aureus (gram positive), Escherichia coli (gram negative) and Salmonella sp bacteria, and antifungal activity against Fusarium oxysporum, Aspergillus niger and Candida albicans. Also, in most cases, metallation increased the activity compared with the free ligand.  相似文献   

15.
Four new Organooxotin Clusters: [(p-MeC6H4)Sn(O)L1]6 (1) (HL1 = 2-(9H-carbazol-9-yl)acetic acid), [PhSn(O)L2]6·2C6H6·2H2O (2) (HL2 = 3-(9H-carbazol-9-yl)propanoic acid), [n-BuSn(O)L2]6 (3), [(c-Hex2Sn)2(L1)O(OH)]2·3C6H6 (4), were synthesized with benzene being used as solvent in the reaction and characterized by elemental analysis, IR, NMR spectroscopy and X-ray crystallography diffraction analyses. Complexes 13 are hexanuclear organotin complexes with drum structure. Complex 4 is dimeric carboxylate tetraorganodistannoxane and shows a ladder structure. There are four crystallographically unique Sn centers in the structure of 4, which consists of a Sn4O2(OH)2 ladder unit, and the ladder consists of four tins held together by four µ3-oxygens. All the complexes show an extensive supramolecular organization in the solid state and form 1D or 2D supramolecular assembly mediated by C–H…O, C–H…π or π…π interactions. Moreover, complexes 1 and 4 exhibit good fluorescence properties in the solid state revealed by the luminescent investigation. The experimental results show the complexes may be explored for potential luminescent materials.  相似文献   

16.
Naphthaldimines containing N2O2 donor centers react with platinum(II) and (IV) chlorides to give two types of complexes depending on the valence of the platinum ion. For [Pt(II)], the ligand is neutral, [(H2L1)PtCl2]·3H2O (1) and [(H2L3)2Pt2Cl4]·5H2O (3), or monobasic [(HL2)2Pt2Cl2]·2H2O (2) and [(HL4)2Pt]·2H2O (4). These complexes are all diamagnetic having square-planar geometry. For [Pt(IV)], the ligand is dibasic, [(L1)Pt2Cl4(OH)2]·2H2O (5), [(L2)Pt3Cl10]·3H2O (6), [(L3)Pt2Cl4(OH)2]·C2H5OH (7) and [(L4)Pt2Cl6]·H2O (8). The Pt(IV) complexes are diamagnetic and exhibit octahedral configuration around the platinum ion. The complexes were characterized by elemental analysis, UV-Vis and IR spectra, electrical conductivity and thermal analyses (DTA and TGA). The molar conductances in DMF solutions indicate that the complexes are non-ionic. The complexes were tested for their catalytic activities towards cathodic reduction of oxygen.  相似文献   

17.
Five N-heterocyclic carboxylate-based coordination complexes, [Co(L1)2(H2O)2]·2H2O (1), [Cd(L1)2(H2O)2]·2H2O (2), [Co(L2)(H2O)3] (3), [Ni(L2)(H2O)3] (4), and [Cu2(L2)2(H2O)2] (5), have been synthesized and characterized by elemental analysis, IR spectroscopy, Powder X-ray diffraction, thermogravimetric analyses, and single-crystal X-ray crystallography, where HL1 is 2-((5-amino-1H-1,2,4-triazol-3-yl)thio)acetic acid and H2L2 is 2-((5-amino-1-(carboxymethyl)-1H-1,2,4-triazol-3-yl)thio)acetic acid. In these complexes, the hydrogen bonds (H-bonds) play an important role in their packing structures. Complex 1 has nine H-bonds showing a 3-D sqc38 topology. Complex 2 has 17 H-bonds exhibiting a 3-D hxl network. Complexes 3 and 4 are isomorphic, both of which possess ten H-bonds to present a 3-D btc topology. Complex 5 with eight H-bonds forms a 2-D sq1 structure. In addition, complex 3 catalyzes the decolorization of methyl orange. Meanwhile, 1, 3, and 5 show certain anticancer activities to inhibit the growth of HepG2 cells.  相似文献   

18.
New bi- and trihomonuclear Mn(II), Co(II), Ni(II), and Zn(II) complexes with sulfa-guanidine Schiff bases have been synthesized for potential chemotherapeutic use. The complexes are characterized using elemental and thermal (TGA) analyses, mass spectra (MS), molar conductance, IR, 1H-NMR, UV-Vis, and electron spin resonance (ESR) spectra as well as magnetic moment measurements. The low molar conductance values denote non-electrolytes. The thermal behavior of these chelates shows that the hydrated complexes lose water of hydration in the first step followed by loss of coordinated water followed immediately by decomposition of the anions and ligands in subsequent steps. IR and 1H-NMR data reveal that ligands are coordinated to the metal ions by two or three bidentate centers via the enol form of the carbonyl C=O group, enolic sulfonamide S(O)OH, and the nitrogen of azomethine. The UV-Vis and ESR spectra as well as magnetic moment data reveal that formation of octahedral [Mn2L1(AcO)2(H2O)6] (1), [Co2(L1)2(H2O)8] (2), [Ni2L1(AcO)2(H2O)6] (3), [Mn3L2(AcO)3(H2O)9] (5), [Co3L2(AcO)3(H2O)9] · 4H2O (6), [Ni3L2(AcO)3(H2O)9] · 7H2O (7), [Mn3L3(AcO)3(H2O)6] (9), [Co2(HL3)2(H2O)8] · 4H2O (10), [Ni3L3(AcO)3(H2O)9] (11), [Mn3L4(AcO)3(H2O)9] · H2O (13), [Co2(HL4)2(H2O)8] · 5H2O (14), and [Ni3L4(AcO)3(H2O)9] (15) while [Zn2L1(AcO)2(H2O)2] (4), [Zn3L2(AcO)3(H2O)3] · 2H2O (8), [Zn3L3(AcO)3(H2O)3] · 3H2O (12), and [Zn3L4(AcO)3(H2O)3] · 2H2O (16) are tetrahedral. The electron spray ionization (ESI) MS of the complexes showed isotope ion peaks of [M]+ and fragments supporting the formulation.  相似文献   

19.
The cobalt(II) complexes [Co(HL1)2(H2O)2]·H2O) ( 1 ) and [Co(HL2)2(H2O)2]( 2 ) [(HL1) = (/plusmn;)‐lactate, (HL2) = 2‐Methyl‐lactate] were prepared and characterized structurally. The cobalt atom is in a distorted octahedral environment in both compounds. Both α‐hydroxycarboxylato ligands are O, O'‐bidentate chelating monoanions. The presence of a lattice water molecule in 1 makes its supramolecular organization different from that of 2 . The thermal behaviour of both compounds was also investigated.  相似文献   

20.
Three new copper(II) complexes [CuL1]2(ClO4)2 (1), [CuL2]ClO4 (2) and [CuL3] (3) with three Schiff base ligands [HL1 = 1-phenyl-3-{3-[(pyridin-2-ylmethylene)-amino]-propylimino}-butan-1-one, HL2 = 1-phenyl-3-[3-(1-pyridin-2-yl-ethylideneamino)-propylimino]-butan-1-one and H2L3 = 3-[3-(1-methyl-3-oxo-3-phenyl-propylideneamino)-propylimino]-1-phenyl-butan-1-one] have been synthesized and structurally characterized by X-ray crystallography. The mono-negative tetradentate asymmetric Schiff base ligands (L1) and (L2) are chelated in complexes 1 and 2 to form square planar copper(II) complexes. In complex 1, the two units are associated weakly through ketonic oxygen of benzoylacetone fragment to form the dimeric entity. The square planar geometry of complex 3 is unusually distorted towards tetrahedral one. All three complexes exhibit reversible cyclic voltammetric responses in acetonitrile solution corresponding to the CuII/CuI redox process. The E1/2 (−0.47 V versus SCE) of 3 shows significant anodic shift due to the tetrahedral distortion around Cu(II) compare to that of 1 and 2 (−0.82 and −0.87 V versus SCE, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号