首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benzathine is prepared in good yields from cyanobenzene by a combination of electrochemical hydrogenation and Kolbe electrolysis using nickel and platinum electrodes in the presence of methanolic sodium methoxide in an undivided cell.  相似文献   

2.
One-step anodic acetoxylation of benzene to phenyl acetate was studied in acetic acid-water solution using a one-compartment electrochemical cell in galvanostatic mode. Compared to the anhydrous system, the addition of water improved the current efficiency for the electro-synthesis of phenyl acetate. The maximum efficiency reached 4.8% with the selectivity of 96% to phenyl acetate when the electrolysis was carried out under the optimal conditions. The investigation also indicated that the concentration of phenyl acetate increased linearly in 12 h and reached 1.07 g/L with the selectivity of 95%. Cyclic voltammetry experiments showed that the adsorption of benzene at Pt anode enhanced by the addition of water was critical to the formation of phenyl acetate. An activated benzene mechanism was proposed for the anodic acytoxylation, and the analysis of gas products demonstrated that Kolbe reaction was the main side reaction.  相似文献   

3.
The present study describes the cationic oxo-thiolation of polymerizable alkenes by using highly reactive cationic species generated by anodic oxidation. These highly reactive cations were able to activate alkenes before their polymerization. Fast mixing in flow microreactors effectively controlled chemoselectivity, enabling higher reaction temperatures.  相似文献   

4.
The synthesis of 1,2-disilylethanes [R(1)R(2)R(3)Si(CH(2))(2)SiR(1)R(2)R(3)] is usually conducted by using noble metal reagents or catalysts. This work describes a new electrochemical synthetic method for their preparation in good yields by oxidation of α-silylacetic acids at Pt anodes (Kolbe electrolysis). Most of the reported synthesized 1,2-disilylethanes in this work are unknown.  相似文献   

5.
We have developed a novel electrolytic system for Kolbe carbon-carbon coupling electrosynthesis based on the acid-base reaction between carboxylic acids as a substrate and solid-supported bases. On the basis of the electrolytic system, Kolbe electrolysis of various carboxylic acids was successfully carried out to provide the corresponding homocoupling products in moderate to excellent yields.  相似文献   

6.
Theoretical simulations on complex electrochemical processes have been developed on the basis of the understanding in electrochemistry, which has benefited from quantum mechanics calculations. This article reviews the recent progress on the theory and applications in electrocatalysis. Two representative reactions, namely water electrolysis and oxygen reduction, are selected to illustrate how the theoretical methods are applied to electrocatalytic reactions. The microscopic nature of these electrochemical reactions under the applied potentials is described and the understanding of the reactions is summarized. The thermodynamics and kinetics of the electrochemical reactions affected by the interplay of the electrochemical potential, the bonding strength and the local surface structure are addressed at the atomic level.  相似文献   

7.
Electrochemical fixation of atmospheric pressure of carbon dioxide to organic compounds is a useful and attractive method for synthesizing of various carboxylic acids. Electrochemical fixation of carbon dioxide, electrochemical carboxylation, organic halides, organic triflates, alkenes, aromatic compounds, and carbonyl compounds can readily occur in the presence of an atmospheric pressure of carbon dioxide to form the corresponding carboxylic acids with high yields, when a sacrificial anode such as magnesium or aluminum is used in the electrolysis. The electrochemical carboxylation of vinyl bromides was successfully applied for the synthesis of the precursor of nonsteroidal anti-inflammatory agents such as ibuprofen and naproxen. On the other hand, supercritical carbon dioxide (scCO2) has significant potential as an environmentally benign solvent in organic synthesis and it could be used both as a solvent and as a reagent in these electrochemical carboxylations by using a small amount of cosolvent.  相似文献   

8.
Reported is the electrophilic amination of functional organolithium intermediates with well‐designed aminating reagents under mild reaction conditions using flow microreactors. The aminating reagents were optimized to achieve efficient C?N bond formation without using any catalyst. The electrophilic amination reactions of functionalized aryllithiums were successfully conducted under mild reaction conditions, within 1 minute, by using flow microreactors. The aminating reagent was also prepared by the flow method. Based on stopped‐flow NMR analysis, the reaction time for the preparation of the aminating reagent was quickly optimized without the necessity of work‐up. Integrated one‐flow synthesis consisting of the generation of an aryllithium, the preparation of an aminating reagent, and their combined reaction was successfully achieved to give the desired amine within 5 minutes of total reaction time.  相似文献   

9.
While the majority of reported paired electrochemical reactions involve carefully matched cathodic and anodic reactions, the precise matching of half reactions in an electrolysis cell is not generally necessary. During a constant current electrolysis almost any oxidation and reduction reaction can be paired, and in the presented work we capitalize on this observation by examining the coupling of anodic oxidation reactions with the production of hydrogen gas for use as a reagent in remote, Pd‐catalyzed hydrogenation and hydrogenolysis reactions. To this end, an alcohol oxidation, an oxidative condensation, intramolecular anodic olefin coupling reactions, an amide oxidation, and a mediated oxidation were all shown to be compatible with the generation and use of hydrogen gas at the cathode. This pairing of an electrolysis reaction with the production of a chemical reagent or substrate has the potential to greatly expand the use of more energy efficient paired electrochemical reactions.  相似文献   

10.
Direct current electrokinetic systems generally require Faradaic reactions to occur at a pair of electrodes to maintain an electric field in an electrolyte connecting them. The vast majority of such systems, e.g. electrophoretic separations (capillary electrophoresis) or electroosmotic pumps (EOPs), employ electrolysis of the solvent in these reactions. In many cases, the electrolytic products, such as H+ and OH? in the case of water, can negatively influence the chemical or biological species being transported or separated, and gaseous products such as O? and H? can break the electrochemical circuit in microfluidic devices. This article presents an EOP that employs the oxidation/reduction of the conjugated polymer poly(3,4-ethylenedioxythiophene), rather than electrolysis of a solvent, to drive flow in a capillary. Devices made with poly(3,4-ethylenedioxythiophene) electrodes are compared with devices made with Pt electrodes in terms of flow and local pH change at the electrodes. Furthermore, we demonstrate that flow is driven for applied potentials under 2?V, and the electrodes are stable for potentials of at least 100?V. Electrochemically active electrodes like those presented here minimize the disadvantage of integrated EOP in, e.g. lab-on-a-chip applications, and may open new possibilities, especially for battery-powered disposable point-of-care devices.  相似文献   

11.
New methods for modifying graphitic carbon surfaces without electrochemical assistance, and without the deliberate formation of carbon surface oxygen functionalities, have emerged in the past decade. The approaches rely on spontaneous reactions of aryldiazonium salts, primary amines, ammonia and iodine azide at room temperature, chemical reduction of aryldiazonium salts, reactions of alkenes and alkynes at elevated temperatures and photochemical reactions of alkenes, alkynes, azides and diazirines. This review describes the methodology and scope of these reactions at graphitic carbon materials (excluding carbon nanotubes) and examines mechanistic possibilities and future prospects.  相似文献   

12.
The analytical expressions were derived to calculate thickness of a three-dimensional flow electrode (TFE) working in limiting diffusion current mode in the cases of unidirectional and multidirectional electric field and solution flow for the given degree of metal extraction. The algorithm was suggested on the basis on the derived formulas and earlier published mathematical models of nonstationary electrolysis at TFE to calculate the whole electrode working conditions at the limiting diffusion current with parallel electrochemical reactions. The calculations and experimental studies were carried out on copper electrodeposition from sulfate electrolyte on TFE working in the limiting diffusion current mode. The effect of major electrochemical reactions to the distribution of potential and partial current densities by the electrode thickness was demonstrated. The process potential distribution was given for various electrode conductivities. A good compliance was shown between the results of calculations and experimental studies.  相似文献   

13.
The electrochemical reactions of carboxylic and lactone groups on carbon nano‐onions (CNOs) in aqueous solutions result in non‐Kolbe products: alcohols, ketones, ethers and epoxides. The anodic/cathodic conversion of ox‐CNOs was assessed by Boehm titrations and by Raman and DRIFTS‐FTIR (diffuse reflectance infrared Fourier transform spectroscopy). The electrochemical properties of oxidized carbon nano‐onions were investigated by cyclic voltammetry in aqueous solutions. The ox‐CNOs are electrochemically active as a result of the reduction of the oxygen‐containing groups.  相似文献   

14.
Synthetic utility of microreactors and highly stereoselective isomerization (>99:<1) of terminal difluoromethylated alkenes to (E)-difluoromethylated alkenes with TBAF in DMF, are described.  相似文献   

15.
Organic synthesis in microreactors is a novel way of performing reactions in a highly controlled way. The benefits of microreactors result from their physical properties, such as enhanced mass and heat transfer as well as regular flow profiles leading to improved yields with increased selectivities.  相似文献   

16.
This is an environmentally friendly method in the field of electroorganic reactions under controlled potential electrolysis, without toxic reagents at a carbon electrode in an undivided cell which involves the (EC) mechanism reaction and comprises two steps alternatively; (i) electrochemical oxidation and (ii) chemical reaction. In particular, the electrochemical oxidation of 4-tert-butylcatechol, 4-methylcatechol and 2,3-dihydroxybenzoic acid in the presence of 2-phenyl-1,3-indandione has been studied in a water-acetonitrile (90 : 10) mixture. The research includes the use of a variety of experimental techniques, such as cyclic voltammetry, controlled-potential electrolysis, and spectroscopic identification of products (FT-IR, (1)H-NMR, and MS spectrometry).  相似文献   

17.
Iridium complex [(pq)(2)IrCl](2) (1) is established as a quantitatively operating lab-on-a-molecule in aqueous media at physiological pH. Acting as a chemodosimeter, 1 uses two channels, PL and ECL, for the detection of cyanide and acetate, with the former undergoing nucleophilic attack and the latter Kolbe electrolysis and radical-metal combination.  相似文献   

18.
This study reports using a droplet flow assisted mechanism to enhance the electrocatalytic oxidation of benzyl alcohol, 2-phenoxyethanol, and hydroxymethylfurfural at room temperature. Cobalt phosphide (CoP) was employed as an active electrocatalyst to promote the oxidation of each of the individual substrates. Surface analysis of the CoP electrocatalyst using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), as well as electrochemical characterization, revealed that it had excellent catalytic activity for each of the substrates studied. The combined droplet flow with the continuous flow electrochemical oxidation approach significantly enhanced the conversion and selectivity of the transformation reactions. The results of this investigation show that at an electrolysis potential of 1.3 V and ambient conditions, both the selectivity and yield of aldehyde from substrate conversion can reach 97.0%.  相似文献   

19.
研究利用分子筛、Nafion薄膜、低密度聚乙烯薄膜和囊泡作为微反应器控制有机光化学反应的方向,提高反应的选择性和可能性.在NaY沸石或低密度聚乙烯薄膜中,带有长烷基链或醚链的二芳基化合物光二聚只生成分子内的加成产物,而不生成分子间的加成产物,从而在底物浓度很大的情况下,高选择性地合成了大环化合物.通过控制底物和敏化剂分子在ZSM-5沸石、Nafion薄膜和囊泡中的分布高选择性地控制烯烃光敏氧化反应的方向,单一地生成单重态氧的氧化产物或超氧负离子的氧化产物.利用Nafion薄膜作为介质进行光诱导电子转移,得到超长寿命的电荷分离态.  相似文献   

20.
Electrochemistry represents unique approaches for the promotion and mechanistic study of chemical reactions and has garnered increasing attention in different areas of chemistry. This expansion necessitates the enhancement of the traditional electrochemical cells that are intrinsically constrained by mass transport limitations. Herein, we present an approach for designing an electrochemical cell by limiting the reaction chamber to a thin layer of solution, comparable to the thickness of the diffusion layer. This thin layer electrode (TLE) provides a modular platform to bypass the constraints of traditional electrolysis cells and perform electrolysis reactions in the timescale of electroanalytical techniques. The utility of the TLE for electrosynthetic applications benchmarked using NHPI-mediated electrochemical C−H functionalization. The application of microscale electrolysis for the study of drug metabolites was showcased by elucidating the oxidation pathways of the paracetamol drug. Moreover, hosting a microelectrode in the TLE, was shown to enable real-time probing of the profiles of redox-active components of these rapid electrosynthesis reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号