首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A study was carried out comparing silica fume (SF) and dealuminated kaolin (DK) as pozzolanic materials in blended cements. Ten, 20 or 30 wt% of SF or DK were substituted for Portland cement. The kinetics of hydration up to 45 h were studied using isothermal conduction calorimetry. Blends containing pozzolanic materials usually have decreased heats of hydration compared to pure cement during the period of C3S hydration, i.e. during the main hydration peak. Depending on the chemical composition and the activity of the pozzolan, the reaction taking place with the lime typically contributes to the heat output after the main hydration peak.The pozzolanic activity of DK is the principal factor and heat evolution increases with respect to pure PC mortar, during the first 15 h. The presence of hydrated silica (silanol groups) in DK increases the pozzolanic activity especially before and during induction period. The acidic silanol sites are capable of a fast acid-base reaction with the alkalis and with any Ca(OH)2 present in cement during the induction period.  相似文献   

2.

The influence of phosphate slag with different finenesses and activators on the hydration of high-belite cement has been studied by using the hydration heat of binders, the DTA curves, the SEM images, and the specific strength. Results indicated that doped phosphorus slag in the cement will reduce heat of hydration. The activity of phosphate slag was low at early stage, but pozzolanic activity of phosphorus slag is higher than that of fly ash. Increasing the specific surface area and curing time and using Ca(OH)2 combined with gypsum can clearly promote the hydration degree of phosphorus slag. The findings in this paper show that since phosphorus slag can promote the hydration of high-belite cement, the strength contribution of cement is increased. Moreover, the greater the specific surface area is, the more significant the promotion effect at 90 d is.

  相似文献   

3.
The objects of the paper are the results of the study on the compatibility of copper refining waste with cement system. The study based on the use of thermal analysis and the comparison of its results with further applied methods (tests of setting, compressive strength and pore analysis) showed good compatibility of the waste up to 20% dose opposite to the cement. It seems that the waste action in cement paste with the Ca(OH)2 binding, produced in the cement process hydration, is connected.  相似文献   

4.
The main objective of this study is to demonstrate the application of strategy of an experiment design to optimize the compressive strength and setting time of zinc phosphate cement used in the dental application. For this work, the extreme vertices design was chosen. Its factors are components of the mixture forming a ternary system: zinc oxide, aluminum phosphate and orthophosphoric acid (ZnO–AlPO4–H3PO4). The local region of dental cement – in simplex space- explored and limited by upper and lower limits of the three components of the mixture. The optimization of each response and then all together by graphical methods allowed us to obtain the adequate cement.  相似文献   

5.
The interaction between styrene-butadiene rubber (SBR) film and the ions from C2S and C3S hydration of Portland cement mortar composites has been evaluated by Fourier Transform Infrared Spectroscopy (FTIR), and the morphology of the composites characterized with scanning electron microscopy (SEM). The specimen used was cured for 28 days. FTIR spectrum supports the interaction of SBR with cement in the composite. Compressive strength, bulk density and water absorption properties of the cured composites were tested. Addition of SBR latex in Portland cement mortar increases the compressive strength and decreases the water absorption. Bulk density study revels interface formation in the composite. The role of the interface in relation to compressive strength of the composite has been discussed. A simple Matrix System model is shown to account composition dependence of bulk density.  相似文献   

6.
The difference among the effects of high-temperature curing on the early hydration properties of the pure cement, the binder containing fly ash, the binder containing GGBS, and the binder containing steel slag was investigated by determining the compressive strength, non-evaporable water content, hydration heat, and Ca(OH)2 content. Results show that the order of the influence degrees of high-temperature on the early hydration of different binders is the binder containing GGBS > the binder containing steel slag > the binder containing fly ash > the pure cement. In the case of short period of high-temperature curing (only 1 day), the strength growth rate of the concrete containing GGBS is the greatest. Though the influence of increasing high-temperature curing period on the hydration degree of the binder containing fly ash is not the most significant, the strength growth rate of the concrete containing fly ash is the most significant due to the excessive consumption of Ca(OH)2 by reaction of fly ash. In the case of high-temperature curing, the Ca(OH)2 content of the paste containing steel slag is much higher than those of the paste containing GGBS and the paste containing fly ash, so though high-temperature curing promotes the hydration of the binder containing steel slag significantly, its influence on the strength growth rate of the concrete containing steel slag is not so significant.  相似文献   

7.
A Brazilian coal power plant generates a waste composed by the fly and bottom ashes produced from coal combustion and by a spent sulfated lime generated after SO2 capture from combustion gases. This work presents a study of the early stages of the hydration of composites formed by this waste and a type II Portland cement, which will be used for CO2 capture. The cement substitution degrees in the evaluated composites were 10, 20, 30 and 40%, and the effect of the coal power unit waste on the hydration reaction was analyzed on real time by NCDTA, during the first 40 h of hydration. The results show that the higher is the substitution degree, the higher is the retarding effect on the cement hydration process. Actually, by respective thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis on initial cement mass basis, this effect is caused by double exchange reactions among Ca and Mg components of the waste, during the first 4 h of hydration, which promote a much higher exothermic effect in the NCDTA curve, simultaneously to respective induction periods. The pozzolanic reactions, due to the presence of the waste silica and alumina containing amorphous phases, consume part of the original Ca(OH)2 content existent in the waste in the case of 30 and 40% substituted pastes, and also from part of the Ca(OH)2 produced in cement hydration reactions, in the case of the 10 and 20% substituted pastes.  相似文献   

8.
In this investigation the effect of addition of magnetite nanoparticles on the hydration characteristics of both ordinary Portland cement (OPC) and high slag cement (HSC) pastes was studied. The cement pastes were prepared using a water/solid (W/S) mass ratio of 0.3 with addition of 0.05, 0.1, and 0.3 % of magnetic fluid Fe3O4 nanoparticles by mass of cement. An aqueous stable magnetic fluid containing Fe3O4 nanoparticles, with a mean diameter in the range of super-paramagnetism, was prepared via co-precipitation method from ferrous and ferric solutions. The admixed magnetite-cement pastes were examined for compressive strength, chemically combined water content, X-ray diffraction analysis, and differential scanning calorimetry. The results of compressive strength revealed that the hardened pastes made from OPC and HSC admixed with different amounts of magnetic fluid have higher compressive strength values than those of the neat cement OPC and HSC cement pastes at almost all ages of hydration. The results of chemically combined water content for the admixed cement pastes showed almost the same general trend and nearly comparable values as those of the neat cement pastes. From the XRD diffractograms obtained for the neat OPC and HSC cement pastes, the main hydration products identified are calcium silicate hydrates, portlandite, and calcium sulfoaluminate hydrates. Addition of magnetic fluid nanoparticles to both of OPC and HSC did not affect the main hydration products of the neat OPC or HSC cement in addition to one main basic difference, namely, the formation of calcium iron hydroxide silicate as a new hydration product with a reasonable hydraulic character.  相似文献   

9.
Molasses is generally used as a grinding aid in cement and as a water reducer and retarder in concrete. In China, the output primarily consists of sugarcane molasses. In this paper, the effects of sugarcane molasses on the physical performance and hydration chemistry of conventional Portland cement were investigated. The setting times, the normal consistency of cement pastes, the compressive strengths and fluidities of the mortars were respectively determined according to Chinese Standard GB/T 1346, GB/T17671 and GB/T 2419. The effect of molasses on the hydration kinetics of cement was investigated using a calorimeter. The hydration products and pore size distribution of the cement pastes were analysed by X-ray powder diffraction, differential scanning calorimetry and a mercury injection apparatus. The results show that a small amount of sugarcane molasses retards the setting and hardening of cement paste and increases the fluidity of cement mortar, while excess molasses accelerates the setting and hardening. Molasses improves significantly the compressive strength at 3d due to the decrease of porosity. The addition of 1.0 % molasses accelerates the formation of ettringite, prevents the second hydration of aluminate phase and delays the hydration of C3S.  相似文献   

10.
Cellulose ethers (CE) are introduced in almost all cement-based dry mortars in order to retain water in mortar mass avoiding losing it too quickly by substrate absorption or water evaporation. In this way the workability of the fresh material, the adherence to the substrate and internal-strength characteristics of mortar, render or tile adhesive are improved. One of the side effects of cellulose ethers is the Portland cement hydration delaying. The influence of six commercial cellulose ethers, hydroxyethylmethyl cellulose (HEMC) type, on the hydration of Portland cement CEM I 42.5 R, was followed by thermal analysis (TG and DTA curves). Three of these cellulose ethers are unmodified, and have different viscosities, while three of them have the same viscosity but differ in the degree of modification (unmodified, one with medium modification and one with high modification). The interest of dry mortars producers for the effects of these cellulose ethers, is generated by the wide offer available on the market and by the absence of systematic data on the effect of different viscosities and degrees of modification on dry mortars properties. In order to quantify the effect of the CE on the cement hydration, the surface area of the endothermic effect corresponding to the dehydration of portlandite (Ca(OH)2), formed after 1, 3, and 7 days of hydration, was defined. It was noted that the proportion of Ca(OH)2 in samples containing CE after 1 day was 30–40 % lower than in reference sample. After 3 and 7 days of hydration the proportion of Ca(OH)2 in samples containing CE approaches that of reference sample (10–20 % less). For the same period of hydration, the different viscosity, and different degree of modification of cellulose ethers cause variations in narrow limits of the proportion of Ca(OH)2, and the degree of cement hydration, respectively.  相似文献   

11.
In this work, the hydration rate and products of blended zeolite cements were studied for periods up to 360 days. Thermoanalytical methods (TG/DTG and DTA) were applied in order to evaluate the hydration rate of blended cements, while. X-ray diffraction and FTIR spectroscopy were used in order to identify the hydrated products. As it is concluded the incorporation of zeolite in cement contributes to the consumption of Ca(OH)2 formed during the cement hydration and the formation of cement-like hydrated products. The pozzolanic reaction of the zeolite is rather slow during the first days of hydration but it is accelerated after the 28 days.  相似文献   

12.
This work presents the relation between the pozzolanic activity, the hydration heat and the compressive strength developed by blended mortars containing 10 and 35% of a spent fluid catalytic cracking catalyst (FCC). The results show that, in comparison with 100% Portland cement mortar, a mortar with 10% FCC increases the hydration heat all over the period of testing. This hydration heat increasing is due to the pozzolanic effect, therefore the resulting compressive strength is higher than the reference mortar. Whereas, in a mortar with 35% of FCC, the hydration heat is higher than 100% PC mortar, until 10 h of testing. After this age, the substitution degree predominates over the pozzolanic activity, showing in this case, lower hydration heat and developing lower compressive strength than 100% PC mortar.  相似文献   

13.
The early hydration properties of cement–steel slag composite binder and cement–limestone powder composite binder were compared in this study by determining the hydration heat of binder within 3 days, the pore structure of paste and the compressive strength of mortar at the age of 3 days. Results show that at the curing temperature of 25 °C, the early hydration heat of the binder containing steel slag is smaller, and the early pore structure of the paste containing steel slag is coarser, but the early compressive strength of the mortar containing steel slag is higher compared with the mix containing limestone powder. Though the early reaction degree of steel slag is low, its chemical contribution to the strength of mortar cannot be neglected. At the curing temperature of 50 °C, the early hydration heat of the binder containing steel slag is larger, and the early pore structure of the paste containing steel slag is finer, and the early compressive strength of the mortar containing steel slag is even higher compared with the mix containing limestone powder. Raising curing temperature can enhance the role played by steel slag more significantly than that played by limestone powder in the hydration and hardening of the composite binder.  相似文献   

14.
During the formation of pastes, mortar and concretes have been used to capture CO2. This work presents a methodology to estimate the carbon dioxide (CO2) sequestered by high strength and sulfate-resistant Portland cement pastes during their early stages of hydration, by Thermogravimetry and Derivative Thermogravimetry. Water to cement ratio equal to 0.50 and 0.70 were evaluated and the captured CO2 amount was determined through TG/DTG curve data on initial cement mass basis, obtained during accelerated carbonation from the fluid state and accelerated carbonation after a first hydration process. The experiments were performed in a controlled chamber, maintaining the CO2 content at 20 vol % and the temperature at 25 °C, at different relative humidity (RH) (60 and 80 %) ambient. The procedure allows one to estimate the amount of CO2 sequestered by the initial cement mass of a given volume of paste, as well as to evaluate the RH and W/C ratio influence on the amount of hydrated formed products, mainly on the Ca(OH)2, important for CO2 fixation.  相似文献   

15.
To improve the properties of steel slag blended cements, a chemical activator was added into blended cements, the mechanical properties and durability of steel slag blended cements were investigated. The results show that steel slag in blended cement pastes presents low hydraulic activity and makes practically no contribution to strength development. After the addition of chemical activator, the mechanical properties and durability of ternary blended cements are increased significantly. The hydration process and micro-structural development of blended cement was investigated by isothermal calorimeter and scanning electric microscope, respectively. Steel slag started hydration in the first 3?days in the presence of chemical activator, steel slag and granulate blast furnace slag reacted with Ca(OH)2 to form a dense microstructure as curing proceeded. Therefore, both early and late compressive strengths of steel slag blended cement with 35% cement clinker and 30% steel slag can be comparable with those of Portland cement.  相似文献   

16.
Pozzolanic cement blends were prepared by the partial substitution of ordinary Portland cement (OPC) with different percentages of burnt clay (BC), Libyan clay fired at 700 °C, of 10, 20, and 30%. The pastes were made using an initial water/solid ratio of 0.30 by mass of each cement blend and hydrated for 1, 3, 7, 28, and 90 days. The pozzolanic OPC–BC blend containing 30% BC was also admixed with 2.5 and 5% silica fume (SF) to improve the physicomechanical characteristics. The hardened pozzolanic cement pastes were subjected to compressive strength and hydration kinetics tests. The results of compressive strength indicated slightly higher values for the paste made of OPC–BC blend containing 10% BC The results of DSC and XRD studies indicated the formation and later the stabilization of calcium silicates hydrates (CSH) and calcium aluminosilicate hydrates (C3ASH4 and C2ASH8) as the main hydration products in addition to free calcium hydroxide (CH). Scanning electron microscopic (SEM) examination revealed that the pozzolanic cement pastes made of OPC–BC mixes possesses a denser structure than that of the neat OPC paste. Furthermore, the addition of SF resulted in a further densification of the microstructure of the hardened OPC–BC–SF pastes; this was reflected on the observed improvement in the compressive strength values at all ages of hydration.  相似文献   

17.
This paper studies the addition (0–40% w/w) of natural zeolite (NZ, 84% clinoptilolite) in blended cements made with Portland cement (PC) with low and medium C3A content. The isothermal calorimetry was used to understand the effect of NZ on the early cement hydration. For low C3A cement, the addition of NZ produces mainly a dilution effect and then the heat released curve is similar to plain cement with lower intensity. For medium C3A cement, the curve shows the C3S peak in advance and a high intensity of third peak attributed to C3A hydration. The high cation fixed of NZ reduces the ions concentration (especially alkalis) in the mixing water stimulating the PC hydration. The flowability decreases when the NZ replacement level increases. Results of Fratini’s test show that NZ with both PCs used presents slow pozzolanic activity. At early age, XRD and FTIR analyses confirm that hydration products are the same as that of the corresponding PC and the CH is progressively reduced after 28 days and some AFm phases (hemi- and monocarboaluminate) appear depending on the NZ percentage and the PC used. For low replacement levels, the compressive strength is higher than the corresponding PC from 2 to 28 days. For high replacement levels, the early compressive strength is lower than that of corresponding plain PC and the pozzolanic reaction improves the later compressive strength of blended cements.  相似文献   

18.

Phosphoaluminate cement (PAC) clinker had good mechanical properties at early and long-term period. In comparison, the compressive strength of PAC clinker modified by BaO was more prominent. As primary mineral phase for PAC clinker, CA’s mineralogical structure and hydration characteristics were intimately related to the compressive strength of hardened cement paste. In this study, the effects of BaO content on the calcination, mineralogical structure and hydration characteristics of CA were investigated. Experimental results showed that the appropriate calcination temperature of CA was 1400 °C. No more than 11% (the substitution ratio of BaO for CaO) addition of BaO can promote the conversion of C12A7 to CA and increase the formation ratio of CA. Appropriate content of 7 mol% BaO could endow the hardened paste with excellent compressive strength. In CA mineral phase the high limit addition of BaO was 15 mol%. The addition of BaO decreased and even restrained the formation of C2AH8 and C3AH6 of CA hydration products and also improved the content of CAH10. The addition of BaO dramatically decreased the hydration velocity and cumulative heat of CA mineral.

  相似文献   

19.
This article demonstrates the possibility of producing alkali-activated hybrid cements based on fly ash (FA), and construction and demolition wastes (concrete waste, COW; ceramic waste, CEW; and masonry waste, MAW) using sodium sulfate (Na2SO4) (2–6%) and sodium carbonate (Na2CO3) (5–10%) as activators. From a mixture of COW, CEW, and MAW in equal proportions (33.33%), a new precursor called CDW was generated. The precursors were mixed with ordinary Portland cement (OPC) (10–30%). Curing of the materials was performed at room temperature (25 °C). The hybrid cements activated with Na2SO4 reached compressive strengths of up to 31 MPa at 28 days of curing, and the hybrid cements activated with Na2CO3 yielded compressive strengths of up to 22 MPa. Based on their mechanical performance, the optimal mixtures were selected: FA/30OPC-4%Na2SO4, CDW/30OPC-4%Na2SO4, FA/30OPC-10%Na2CO3, and CDW/30OPC-10%Na2CO3. At prolonged ages (180 days), these mixtures reached compressive strength values similar to those reported for pastes based on 100% OPC. A notable advantage is the reduction of the heat of the reaction, which can be reduced by up to 10 times relative to that reported for the hydration of Portland cement. These results show the feasibility of manufacturing alkaline-activated hybrid cements using alternative activators with a lower environmental impact.  相似文献   

20.
Four types of alkanolamines (i.e., traditional alkanolamines represented by TEA and TIPA and new alkanolamines represented by DEIPA and EDIPA) were added to Portland cement as chemical additives, and their effects on the cement properties and hydration process were investigated. An isothermal calorimeter was used to track the hydration heat flow of the cement pastes with or without alkanolamines. Thermogravimetric analyses were performed to measure the degree of hydration over the course of 28 days. In addition, X-ray diffraction, MIP analysis and SEM were used as auxiliary tests. The results indicated that alkanolamines improved the compressive strength of the cement mortars. It was found that TEA increased the rate of the second hydration of C3A, and TIPA accelerated the hydration of C4AF. DEIPA and EDIPA promoted the hydration of both the aluminum and ferrite phases as well as catalyzed the conversion of AFt to the AFm phase. By contrast, the new alkanolamines represented by DEIPA and EDIPA expressed more superior properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号