首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the experimental and theoretical spectra of 3-chloro-4-fluoro benzonitrile (3C4FBN) were studied. The Fourier transform infrared and Fourier transform Raman spectra of 3C4FBN were recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods with 6-311++G(d,p) basis set. The harmonic-vibrational frequencies, infrared intensities and Raman scattering activities of the title compound were performed at and HF/B3LYP/6-311++G(d,p) level of theories. The scaled theoretical wave number showed very good agreement with the experimental values. The thermodynamic functions of the title compound was also performed at HF/6-31G(d,p) and B3LYP/6-311++G(d,p) level of theories. A detailed interpretation of the infrared and Raman spectra of 3C4FBN was reported. The theoretical spectrograms for FT-IR and FT-Raman spectra of the title molecule have been constructed.  相似文献   

2.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 4-N,N'-dimethylamino pyridine (4NN'DMAP). The Fourier transform infrared and Fourier transform Raman spectra of 4NN'DMAP was recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods with 6-31G(d,p) and 6-311++G(d,p) basis sets. The harmonic vibrational frequencies, infrared intensities and Raman scattering activities of the title compound were performed at same level of theories. The scaled theoretical wavenumber showed very good agreement with the experimental values. The thermodynamic functions of the title compound was also performed at HF/6-31G(d,p) and B3LYP/6-311++G(d,p) level of theories. A detailed interpretation of the infrared and Raman spectra of 4NN'DMAP was reported. The theoretical spectrograms for FT-IR and FT-Raman spectra of the title molecule have been constructed.  相似文献   

3.
The FT-IR and FT-Raman spectra of m-Xylol molecule have been recorded using Bruker IFS 66V spectrometer in the range 4000-100cm(-1). The molecular geometry and vibrational frequencies in the ground state are evaluated using the Hartree-fock (HF) and B3LYP with 6-31+G (d, p), 6-31++G (d, p) and 6-311++G (d, p) basis sets. The computed frequencies are scaled using a suitable scale factors to yield good agreement with the observed values. The HF and DFT analysis agree well with experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and B3LYP methods indicate that B3LYP/6-311++G (d, p) is superior to HF/6-31+G (d, p) for molecular vibrational problems. The complete data of this title compound provide some useful information for the study of substituted benzenes. The influences of Methyl groups on the geometry of benzene and its normal modes of vibrations have also been discussed.  相似文献   

4.
The molecular geometry, vibrational frequencies and NBO analysis of phenylisothiocyanate (PITC) in the ground state have been calculated by using density functional theory calculation (B3LYP) with 6-311++G(d,p) basis set. The optimized geometrical parameters obtained by DFT calculations are in good agreement with experimental values. Comparison of the observed fundamental vibrational frequencies of the PITC and calculated result by density functional theory (B3LYP) indicates B3LYP is superior for molecular vibrational problems. The entropy of the title compound was also performed at HF/B3LYP/6-311++G(d,p) levels of theory. Natural bond orbital (NBO) analysis of title molecule is also carried out. A detailed interpretation of the IR and Raman spectra of PITC is reported on the basis of the calculated potential energy distribution (PED). The theoretical spectrogram for IR spectrum of the title molecule has been constructed.  相似文献   

5.
Fourier-transform Raman and infrared spectra of 2-nitroanisole are recorded (4000-100 cm(-1)) and interpreted by comparison with respective theoretical spectra calculated using HF and DFT method. The geometrical parameters with C(S) symmetry, harmonic vibrational frequencies, infrared and Raman scattering intensities are determined using HF/6-311++G (d, p), B3LYP/6-311+G (d, p), B3LYP/6-311++G (d, p) and B3PW91/6-311++G (d, p) level of theories. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The SQM method, which implies multiple scaling of the DFT force fields has been shown superior to the uniform scaling approach. The vibrational frequencies and the infrared intensities of the C-H modes involved in back-donation and conjugation are also investigated.  相似文献   

6.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 3,4-dimethoxyaniline (3,4-DMA). The Fourier transform infrared and Fourier transform Raman spectra of 3,4-DMA was recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods using 6-31G(d,p) and 6-311++G(d,p) basis sets. The harmonic vibrational frequencies, infrared intensities, Raman scattering activities and the thermodynamic functions of the title compound were performed at and HF/B3LYP/6-311++G(d,p) level of theories. The scaled theoretical wavenumber showed very good agreement with the experimental values. A detailed interpretation of the infrared and Raman spectra of 3,4-DMA was reported. The theoretical spectrograms for IR and Raman spectra of the title molecule have been constructed.  相似文献   

7.
The conformational analysis of 6,8-diphenylimidazo[1,2-α]pyrazine molecule (abbreviated as 68DIP) was performed by using B3LYP/6-31G(d) level of theory to find the most stable form. Two staggered stable conformers were observed on the torsional potential energy surface. The equilibrium geometry, bonding features and vibrational frequencies of 68DIP have been investigated by using the DFT (B3LYP) and HF methods for the lowest energy conformer. The first order hyperpolarizability (β(total)) of this molecular system and related properties (β, μ, <α> and Δα) are calculated using HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) methods based on the finite-field approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and C-H?N intramolecular hydrogen-bond-like weak interaction has been analyzed using natural bond orbital (NBO) analysis by using B3LYP/6-311++G(d,p) method. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies E((2)) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. UV-vis spectrum of the compound was recorded and electronic properties, such as HOMO, LUMO energies, excitation energies and wavelength were performed by TD-DFT/B3LYP, CIS and TD-HF methods by using 6-311++G(d,p) basis set. Finally, the calculation results were applied to simulated infrared spectra of the title compound which show good agreement with observed spectra.  相似文献   

8.
The Schiff base compound (E)-2-[(2-chlorophenyl)iminomethyl]-4-trifluoromethoxyphenol has been synthesized and characterized by IR, UV-vis, and X-ray single-crystal determination. The molecular geometry from X-ray experiment in the ground state has been compared using the density functional theory (DFT) with the 6-311++G(d,p) basis set. The calculated results show that the DFT can well reproduce the structure of the title compound. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and a good agreement is determined with the experimental ones. To investigate the tautomeric stability, optimization calculations at the B3LYP/6-311++G(d,p) level were performed for the enol and keto forms of the title compound. Calculated results reveal that its enol form is more stable than its keto form. The predicted nonlinear optical properties of the title compound are much greater than those of urea. The changes of thermodynamic properties for the formation of the title compound with the temperature ranging from 200 to 500 K have been obtained using the statistical thermodynamic method. At 298.15 K, the change of Gibbs free energy for the formation reaction of the title compound is -824.841 kJ/mol. The title compound can spontaneously be produced from the isolated monomers at room temperature. The tautomeric equilibrium constant is also computed as 3.85 × 10(-4) at 298.15 K for enol?keto tautomerization of the title compound. In addition, a molecular electrostatic potential map of the title compound was performed using the B3LYP/6-311++G(d,p) method.  相似文献   

9.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of o-chlorophenoxy acetic acid (OCPAA) and p-chlorophenoxy acetic acids (PCPAA). The FT-IR and Fourier transform-Raman spectra of both the compounds was recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods with 6-311++G(d,p) basis set and harmonic vibrational frequencies, infrared intensities and Raman scattering activities were calculated by density functional B3LYP method with the 6-311++G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compounds were also performed at B3LYP/6-311++G(d,p) level of theory. A detailed interpretation of the infrared and Raman spectra of o-chloro and p-chlorophenoxy acetic acid is reported. The theoretical FT-IR spectrograms for the title molecules have been constructed.  相似文献   

10.
The Fourier transform Raman and Fourier transform infrared spectra of 5-amino-o-cresol (5AOC) were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities were calculated by HF and density functional B3LYP method with the 6-311G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compound were also performed at HF/6-311G(d,p) and B3LYP/6-311G(d,p) levels of theory. A detailed interpretation of the infrared and Raman spectra of 5-amino-o-cresol is reported. The theoretical spectrograms for FT-IR spectra of the title molecule have been constructed.  相似文献   

11.
The laser Raman and Fourier transform infrared spectra of 2-amino-5-methylphenol were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities, Raman scattering activities, depolarization ratios and reduced masses were calculated by HF and density functional B3LYP methods by using 6-311+G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compound were also performed at HF/6-31G(d,p)/6-311+G(d,p) and B3LYP/6-31G(d,p)/6-311+G(d,p) levels of theory. A detailed interpretations of the infrared and Raman spectra of 2-amino-5-methylphenol is reported. The theoretical spectrograms for FT-IR spectra of the title molecule have been constructed.  相似文献   

12.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of benzimidazole. The laser Raman and Fourier transform infrared spectra of benzimidazole were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities, Raman scattering activities, depolarization ratios and reduced masses were calculated by HF and density functional B3LYP method with the 6-311G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compound were also performed at HF/6-31G(d,p)/6-311G(d,p) and B3LYP/6-31G(d,p)/6-311G(d,p) levels of theory. A detailed interpretations of the infrared and Raman spectra of benzimidazole is reported. The theoretical spectrograms for FT-IR spectra of the title molecule have been constructed.  相似文献   

13.
The FT-Raman and FT-IR spectra for 3-Ethylpyridine (3-EP) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (B3LYP) method by employing 6-31G(d,p) and 6-311++G(d,p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values of some substituted benzene. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311++G(d,p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the pyridine are effected upon profusely with the C2H5 substitutions in comparison to pyridine and these differences are interpreted.  相似文献   

14.
The Fourier transform Raman and Fourier transform infrared spectra of 2-amino-4,5-difluorobenzoic acid (2A45DFBA) were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, depolarization ratios were calculated by HF and density functional B3LYP method with the 6-31+G(d, p) and 6-311+G(d, p) basis sets. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compound were also performed at HF/6-31+G(d, p)/6-311+G(d, p) and B3LYP/6-31+G(d, p)/6-311+G(d, p) levels of theory. A detailed interpretations of the infrared and Raman spectra of 2-amino-4,5-difluorobenzoic acid is reported. The theoretical spectrograms for FT-IR spectra of the title molecule have been constructed.  相似文献   

15.
Optimized geometry and harmonic vibrational frequency of 2-dicyanovinyl-5-(4- ethoxyphenyl)thiophene (C16H12N2OS) are calculated at the HF/6-31++G(d,p) and B3LYP/6- 311++G(d,p) levels. Mulliken charges in the ground state are also calculated. The research shows the presence of intermolecular interaction in the title compound. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. A detailed interpretation of the infrared spectra of the title compound is reported. The theoretical spectrograms for IR spectra of the title compound have been constructed. The isotropic chemical shift computed by 13C and 1H NMR analyses also shows good agreement with the experimental observations.  相似文献   

16.
The Fourier transform Raman and Fourier transform infrared spectra of methyl benzoate (MB) were recorded in the liquid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, depolarization ratios, reduced masses were calculated by Hartree-Fock (HF) and density functional B3LYP method with the 6-311+G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compound were also performed at HF/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory. A detailed interpretations of the infrared and Raman spectra of methyl benzoate is reported. The theoretical spectrograms for FT-IR spectra of the title molecule have been constructed.  相似文献   

17.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 3-aminobenzyl alcohol. The FT-Raman and FT-IR spectra of 3-aminobenzyl alcohol were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities, Raman scattering activities, depolarization ratios and reduced masses were calculated by ab initio HF and density functional B3LYP method with 6-311+G(d,p) basis sets. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compound were also performed at HF/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory. A detailed interpretation of the infrared and Raman spectra of 3-aminobenzyl alcohol is reported. The theoretical spectrograms for FT-IR spectra of the title molecule have been constructed.  相似文献   

18.
19.
The Fourier transform infrared (FTIR) and FT Raman spectra of p-toluenesulfonyl isocyanate (p-tosyl isocyanate) have been measured. The molecular geometry, vibrational frequencies, infrared intensities, Raman activities and atomic charges have been calculated by using ab initio HF and density functional theory calculation (B3LYP) with 6-311+G(d,p) basis set. Complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT Raman data. The thermodynamic functions of the title compound were also performed with the aid of HF/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory. Simulated FTIR and FT Raman spectra for p-tosyl isocyanate showed good agreement with the observed spectra. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The dipole moment (μ), polarizability (α) and the hyperpolarizability (β) values of the investigated molecule have been computed using HF and B3LYP methods.  相似文献   

20.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 3-aminobenzotrifluoride. The FT-Raman and Fourier transform infrared spectra of 3-aminobenzotrifluoride (3ABTF) were recorded in the liquid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, depolarization ratios, reduced masses were calculated by HF and density functional B3LYP method with the 6-31G(d,p) and 6-311G(d,p) basis sets. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compound were also performed at HF/6-31G(d,p)/6-311G(d,p) and B3LYP/6-31G(d,p)/6-311G(d,p) levels of theory. A detailed interpretations of the infrared and Raman spectra of 3ABTF is reported. The theoretical spectrograms for FT-IR spectra of the title molecule have been constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号