首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A new method for the simultaneous determination of the kinetic order and activation energy for atom release under isothermal condition in a graphite furnace has been developed. Tungsten wire probe atomization was employed to examine the validity of the present method. By means of this model, the kinetic parameters for the atomization of Bi, Ge, Pb and Mn at constant temperatures were successfully determined. The values of the kinetic order and activation energy were found to be 0.67 ± 0.01 and 302 ± 8 kJ mol−1 for Bi, 1.01 ± 0.08 and 109 ± 2 kJ mol−1 for Ge, 0.46 ± 0.01 and 159 ± 2 kJ mol−1 for Pb and 0.97 ± 0.03 and 372 ± 5 kJ mol−1 for Mn, respectively. The atomization mechanism for these four elements from the tungsten probe surface was also discussed.  相似文献   

2.
The kinetic of D,L-lactide polymerization in presence of biocompatible zirconium acetylacetonate initiator was studied by differential scanning calorimetry in isothermal mode at various temperatures and initiator concentrations. The enthalpy of D,L-lactide polymerization measured directly in DSC cell was found to be ΔH=−17.8±1.4 kJ mol−1. Kinetic curves of D,L-lactide polymerization and propagation rate constants were determined for polymerization with zirconium acetylacetonate at concentrations of 250–1000 ppm and temperature of 160–220 °C. Using model or reversible polymerization the following kinetic and thermodynamic parameters were calculated: activation energy Ea=44.51±5.35 kJ mol−1, preexponential constant lnA=15.47±1.38, entropy of polymerization ΔS=−25.14 J mol−1 K−1. The effect of reaction conditions on the molecular weight of poly(D,L-lactide) was shown.  相似文献   

3.
Rate constants and activation energies for the reactions of ozone with isoprene, methacrolein, and methyl‐vinyl‐ketone in aqueous solution have been determined at temperatures from 5 to 30°C, using the stopped‐flow‐technique and monitoring ozone decay. The rate constants at 25°C and the activation energies have been found to be 4.1 (±0.2) × 105 M−1 s−1 and 19.9 (±0.5) kJ mol−1 for isoprene, 2.4 (±0.1) × 104 M−1 s−1 and 23.9 (±0.5) kJ mol−1 for methacrolein, and 4.4 (±0.2) × 104 M−1 s−1 and 18.0 (±0.5) kJ mol−1 for methyl‐vinyl‐ketone. A UV spectrum of a transient intermediate with a lifetime of about 15 s formed during the ozonation of isoprene was obtained in the range 220 to 300 nm. It rises steadily toward 220 nm. It is suggested that the spectrum can be attributed to the two unsaturated Criegee‐intermediates (carbonyl oxides), which would conceivably be stabilized by resonance. Lifetime considerations indicate that the oxidation of isoprene and its first‐generation reaction products, methacrolein and methyl‐vinyl‐ketone, by ozone and OH in the aqueous phase of a cloud environment play only a minor role compared to homogeneous gas‐phase processing. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 182–190, 2001  相似文献   

4.
《Thermochimica Acta》1987,122(2):289-294
The standard enthalpy of formation of potassium metasilicate (K2SiO3), determined by hydrofluoric acid solution calorimetry, was found to be ΔHof,298 = −363.866±0.421 kcal mol−1 (−1522.415±1.762 kj mol−1). The standard enthalpy of formation from the oxides was found to beΔHo298 = −64.786±0.559 kcal mol−1 (−271.065±2.339 kJ mol−1).These experimentally determined data were combined with data from the literature to calculate the Gibbs energies of formation and equilibrium constants of formation over the temperature range of the literature data. The standard enthalpies of formation and Gibbs energies of formation are given as functions of temperature. The standard Gibbs energy of formation is ΔGf,298.150 = −341.705 kcal mol−1 (−1429.694 kJ mol−1).  相似文献   

5.
A rate constant for the epoxidation of acrolein by acetylperoxyl radicals has been determined to be k4 = (1.3 ± 0.9) × 104 dm3mol−1s−1 at 383 K, which is anomalously fast in comparison with the epoxidation of alkenes. Abstraction of the acyl hydrogen atom from acrolein by acetylperoxyl radicals at 393 K was found to be at least 60 times slower than from acetaldehyde and at least three orders of magnitude slower than abstraction of the acyl hydrogen atom of the epoxide of acrolein. The fast rate for epoxidation of acrolein and the slow rate for hydrogen abstraction provide an explanation for the anomalously slow rate for the autoxidation of acrolein and suggests that acrolein formed during the autoxidation of alkene will react further to give its epoxide, and not exclusively by abstraction of the acyl hydrogen atom as was previously accepted. © 1999 John Wiley & Sons, Inc., Int J Chem Kinet 31: 277–282, 1999  相似文献   

6.
The effect on the diffusivity of oxygen of vanadium additions to niobium was investigated by a diffusion couple technique. The addition of vanadium to niobium results in an increase of the activation energy for oxygen diffusion from 107 kJ mol−1 for oxygen in niobium to 176 ± 9 kJ mol−1 for the Nb-0.5at.%V alloy and to 194 ± 9 kJ mol−1 for the Nb-10at.%V alloy. This increase in the activation energy is attributed to the trapping of oxygen by vanadium atoms. Applying Kirchheim's trapping model and the results of internal friction measurements, trapping energies of about −64 and −49 kJ mol−1 were obtained for the Nb-0.5at.%V and the Nb-10at.%V alloys respectively.  相似文献   

7.
Substitution reactions of a Cl ligand in [SnCl2(tpp)] (tpp=5,10,15,20‐tetraphenyl‐21H,23H‐porphinato(2−)) by five organic bases i.e., butylamine (BuNH2), sec‐butylamine (sBuNH2), tert‐butylamine (tBuNH2), dibutylamine (Bu2NH), and tributylamine (Bu3N), as entering nucleophile in dimethylformamide at I=0.1M (NaNO3) and 30–55° were studied. The second‐order rate constants for the substitution of a Cl ligand were found to be (36.86±1.14)⋅10−3, (32.91±0.79)⋅10−3, (22.21±0.58)⋅10−3, (19.09±0.66)⋅10−3, and (1.36±0.08)⋅10−3 M −1s−1 at 40° for BuNH2, tBuNH2, sBuNH2, Bu2NH, and Bu3N, respectively. In a temperature‐dependence study, the activation parameters ΔH and ΔS for the reaction of [SnCl2(tpp)] with the organic bases were determined as 38.61±4.79 kJ mol−1 and −150.40±15.46 J K−1mol−1 for BuNH2, 40.95±4.79 kJ mol−1 and −143.75±15.46 J K−1mol−1 for tBuNH2, 30.88±2.43 kJ mol−1 and −179.00±7.82 J K−1mol−1 for sBuNH2, 26.56±2.97 kJ mol−1 and −194.05±9.39 J K−1mol−1 for Bu2NH, and 39.37±2.25 kJ mol−1 and −174.68±7.07 J K−1 mol−1 for Bu3N. From the linear rate dependence on the concentration of the bases, the span of k2 values, and the large negative values of the activation entropy, an associative (A) mechanism is deduced for the ligand substitution.  相似文献   

8.
The kinetics and mechanism of oxidation of crotyl alcohol by peroxomonosulfate has been studied, and the species of the peroxomonosulfate are discussed to find out the role of activated species. A plausible reaction mechanism is suggested, and a derived rate law corresponds to all experimental observations. The activation parameters such as energy and entropy of activation have been calculated as 37.21 ± 0.5 kJ mol−1 and −148.91 ± 2.7 J K−1 mol−1, respectively, by employing the Eyring plot.  相似文献   

9.
Propagation rate constants for the free radical polymerization of methacrylonitrile (MAN) have been obtained by pulsed laser photolysis (PLP). The temperature dependence of the propagation rate constants indicates a frequency factor of 10(6,43 ± 0,26) L · mol−1 · s−1 and an activation energy of 29,7 ± 1,5 kJ · mol−1. These parameters suggest that the relatively slow rate of propagation in MAN polymerization in relation to other common monomers (methyl methacrylate, styrene) can be attributed to the relative steric bulk and stability of the propagation species.  相似文献   

10.
The far-infrared spectra of gaseous and solid ethyl nitrate, CH3CH2ONO2, have been recorded from 500 to 50 cm−1. The fundamental asymmetric torsion of the trans conformer which has a heavy atom plane has been observed at 112.50 cm−1 with two excited states failing to lower frequencies, and the corresponding fundamental torsion of the gauche conformer was observed at 109.62 cm−1 with two excited states also falling to lower frequencies. The results of a variable temperature Raman study indicate that the trans conformer is more stable than the gauche conformer by 328 ± 96 cm−1 (938 ± 275 cal mol−1). An asymmetric potential function governing the internal rotation about the CH2O bond is reported which gives a trans to gauche barrier of 894 ± 15 cm−1 (2.56 ± 0.04 kcal mol−1) and a gauche to gauche barrier of 3063 ± 68 cm−1 (8.76 ± 0.20 kcal mol−1) with the trans conformer more stable by 220 ± 148 cm−1 (0.63 ± 0.42 kcal mol−1). Transitions arising from the symmetric CH3 and NO2 torsions are observed for both conformers, from which the threefold and twofold periodic barriers to internal rotation have been calculated. For the trans conformer the values are 1002 cm−1 (2.87 kcal mol−1) and 2355 ± 145 cm−1 (6.73 ± 0.42 kcal mol−1) and for the gauche conformer they are 981 cm−1 (2.81 kcal mol−1) and 2736 ± 632 cm−1 (7.82 ± 1.81 kcal mol−1) for the CH3 and NO2 rotors, respectively. These results are compared to the corresponding quantities for some similar molecules.  相似文献   

11.
Kinetic and thermodynamic investigations were performed for a mixed aqueous-organic, 1:1 (v/v) water–1,4-dioxane medium, which was found to be an efficient solvent for the interaction of a neutral dichlorotris(triphenylphosphine) ruthenium(II), RuCl2(PPh3)3 complex with carbon monoxide at atmospheric pressure. During the interaction, RuCl2(PPh3)3 dissociates to a neutral complex dichlorobis(triphenylphosphine) ruthenium(II), RuCl2(PPh3)2, by losing a coordinated PPh3 ligand and RuCl2(PPh3)2 coordinates with CO to form an in situ carbonyl complex RuCl2(CO)(PPh3)2. The in situ formed carbonyl complex RuCl2(CO)(PPh3)2 was thoroughly characterized by equilibrium, spectrophotometric, IR, and electrochemical techniques. Under equilibrium conditions, the rate and dissociation constants for the dissociation of PPh3 from RuCl2(PPh3)3 were found to be favorable for the formation of the carbonyl complex RuCl2(CO)(PPh3)2. The rates of complexation for the formation of RuCl2(CO)(PPh3)2 were found to follow an overall second-order kinetics being first order in terms of the concentrations of both carbon monoxide and RuCl2(PPh3)2. The determined activation parameters corresponding to the rate constant (ΔH# = 35.9 ± 2.5 kJ mol−1 and ΔS# = −122 ± 6 J K−1 mol−1) and thermodynamic parameters corresponding to the formation constant (ΔH° = −33.5 ± 4.5 kJ mol−1, ΔS° = −25 ± 8 J K−1 mol−1, and ΔG° = −25.7 ± 2.0 kJ mol−1) were found to be highly favorable for the formation of the complex RuCl2(CO)(PPh3)2. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 359–369, 2008  相似文献   

12.
Unimolecular reactions of mutual isomerization of cyclopentyl and 1-penten-5-yl radicals have been investigated by chemical activation. The radicals were generated by adding energized hydrogen atoms (EH about 23 kcal mol−1) to the double bond of either cyclopentane or 1,4-pentadiene. Based on the extensive steady-state RRKM calculations employing the experimental data from this work as well as from the literature, the threshold energies for the cyclopentyl ring opening and closure are 32 ± 0.3 and 16.2 ± 0.3 kcal mol−1, respectively. The entropy of activation for the ring opening is close to zero.  相似文献   

13.
《Tetrahedron: Asymmetry》2001,12(10):1395-1398
The inherently chiral tetrabenzoxazine resorcarene derivative 1 shows characteristic plateau-formation during enantioselective HPLC separation on the chiral stationary phase Chiralpak AD. By computer assisted peak form analysis of the elution profiles, obtained from temperature dependent dynamic HPLC (DHPLC) experiments, with ChromWin, the enantiomerization barrier ΔG#(298 K)=92±2 kJ mol−1 and the activation parameters ΔH#=53.0±1.8 kJ mol−1 and ΔS#=−131±14 J (K mol)−1 were determined.  相似文献   

14.
The kinetics and mechanism of formation of gehlenite, Al–Si spinel phase, wollastonite and anorthite from the mixture of kaolinite and calcite was investigated by differential thermal analysis under the heating rate from 283 to 293 K min−1 using Kissinger equation. The changes in the phase composition of the sample during the thermal treatment were investigated via simultaneous TG-DTA, in situ high-temperature x-ray diffraction analysis and high-temperature heating-microscopy. The crystallizations of gehlenite and Al–Si spinel phase show apparent activation energy of (411 ± 5) kJ mol−1 and (550 ± 9) kJ mol−1, respectively. The value of kinetic exponent corresponds to the process limited by the decreasing nucleation rate for gehlenite while constant nucleation rate is determined for Al–Si spinel phase. Anorthite crystallizes from the eutectic melt and the process shows the apparent activation energy of (1140 ± 25) kJ mol−1. The process is limited by the constant nucleation rate of a new phase.  相似文献   

15.
Ligand substitution kinetics for the reaction [PtIVMe3(X)(NN)]+NaY=[PtIVMe3(Y)(NN)]+NaX, where NN=bipy or phen, X=MeO, CH3COO, or HCOO, and Y=SCN or N3, has been studied in methanol at various temperatures. The kinetic parameters for the reaction are as follows. The reaction of [PtMe3(OMe)(phen)] with NaSCN: k1=36.1±10.0 s−1; ΔH1=65.9±14.2 kJ mol−1; ΔS1=6±47 J mol−1 K−1; k−2=0.0355±0.0034 s−1; ΔH−2=63.8±1.1 kJ mol−1; ΔS−2=−58.8±3.6 J mol−1 K−1; and k−1/k2=148±19. The reaction of [PtMe3(OAc)(bipy)] with NaN3: k1=26.2±0.1 s−1; ΔH1=60.5±6.6 kJ mol−1; ΔS1=−14±22 J mol−1K−1; k−2=0.134±0.081 s−1; ΔH−2=74.1±24.3 kJ mol−1; ΔS−2=−10±82 J mol−1K−1; and k−1/k2=0.479±0.012. The reaction of [PtMe3(OAc)(bipy)] with NaSCN: k1=26.4±0.3 s−1; ΔH1=59.6±6.7 kJ mol−1; ΔS1=−17±23 J mol−1K−1; k−2=0.174±0.200 s−1; ΔH−2=62.7±10.3 kJ mol−1; ΔS−2=−48±35 J mol−1K−1; and k−1/k2=1.01±0.08. The reaction of [PtMe3(OOCH)(bipy)] with NaN3: k1=36.8±0.3 s−1; ΔH1=66.4±4.7 kJ mol−1; ΔS1=7±16 J mol−1K−1; k−2=0.164±0.076 s−1; ΔH−2=47.0±18.1 kJ mol−1; ΔS−2=−101±61 J mol−1 K−1; and k−1/k2=5.90±0.18. The reaction of [PtMe3(OOCH)(bipy)] with NaSCN: k1 =33.5±0.2 s−1; ΔH1=58.0±0.4 kJ mol−1; ΔS1=−20.5±1.6 J mol−1 K−1; k−2=0.222±0.083 s−1; ΔH−2=54.9±6.3 kJ mol−1; ΔS−2=−73.0±21.3 J mol−1 K−1; and k−1/k2=12.0±0.3. Conditional pseudo-first-order rate constant k0 increased linearly with the concentration of NaY, while it decreased drastically with the concentration of NaX. Some plausible mechanisms were examined, and the following mechanism was proposed. [Note to reader: Please see article pdf to view this scheme.] © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 523–532, 1998  相似文献   

16.
The kinetics of the reactions of ground state oxygen atoms with 1-pentene, 1-hexene, cis-2-pentene, and trans-2-pentene was investigated in the temperature range 200 to 370 K. In this range the temperature dependences of the rate constants can be represented by k = A′ Tn exp(− E′a/RT) with A′ = (1.0 ± 0.6) · 10−14 cm3 s−1, n = 1.13 ± 0.02, E′a = 0.54 ± 0.05 kJ mol−1 for 1-pentene: A′ = (1.3 ± 1.2) · 10−14 cm3 s−1, n = 1.04 ± 0.08, E′a = 0.2 ± 0.4 kJ mol−1 for 1-hexene; A′ = (0.6 ± 0.6) · 10−14 cm3 s−1, n = 1.12 ± 0.05, E′a = − 3.8 ± 0.8 kJ mol−1 for cis-2-pentene; and A′ = (0.6 ± 0.8) · 10−14 cm3 s−1, n = 1.14 ± 0.06, E′a = − 4.3 ± 0.5 kJ mol−1 for trans-2-pentene. The atoms were generated by the H2-laser photolysis of NO and detected by time resolved chemiluminescence in the presence of NO. The concentrations of the O(3P) atoms were kept so low that secondary reactions with products are unimportant. © 1997 John Wiley & Sons, Inc.  相似文献   

17.
The electrochemical behavior of 5-amino-1,10-phenanthroline and tris[5-amino-1,10-phenanthroline]-iron(II) at carbon paste, glassy carbon, and platinum electrodes is reported. The iron complex undergoes electrochemically induced oxidative polymerization from acetonitrile solutions and the resulting polymers are very stable. Charge transport through the polymer films occurs with a charge transfer diffusion coefficient, Dct, equal to 3.1 × 10−8 cm2 s−1 corresponding to an electron self-exchange rate of 5.2×107M−1 s−1. The activation energy and the entropy change for the charge transfer diffusion process are (approximate values) 32.0 ± 0.12 kJ mol−1 and −24.7 ± 0.4 J K−1 mol−1, respectively.  相似文献   

18.
Laser flash photolysis coupled with resonance fluorescence detection of Br atoms was employed to investigate the temperature dependence of the reaction Br + neo‐C5H12 (1) between 688 and 775 K. The following Arrhenius preexponential factor and activation energy were determined (±1 σ): A1 = (6.89 ± 2.27) 1014 cm3 mol−1 s−1 and EA,1 = 57.61 ± 2.05 kJ mol1 The only other kinetic parameters reported for the reaction of Br atoms with neo‐C5H12 were obtained from competitive kinetic experiments relative to Br + C2H6. Comparison with our direct results is hampered by uncertainties in the kinetic data for the reference reaction that may need reinvestigation. The standard enthalpy of formation for the neo‐C5H11 radical was estimated to be 34.7 and 41.6 kJ mol−1, depending on the value of the activation energy assumed for the reverse reaction neo‐C5H11 + HBr (−1). © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 33: 49–55, 2001  相似文献   

19.
The Raman (3200—10cm−1) and infrared (3200—50 cm−1) spectra of gaseous and solid 1-chloro-2-methylpropane and 1-bromo-methylpropane, as well as the Raman spectra of the liquids, have been recorded and assigned. The gauche asymmetric torsion of the 1-chloro-2-methylpropane molecules has been observed at 110 cm−1 in the Raman spectrum of the gas. For the 1-bromo-2-methylpropane molecule, both the trans and gauche asymmetric torsions have been observed at 106.70 and 103.94 cm−1, respectively, along with three additional transitions for the gauche conformer. From these data, the asymmetric potential function for the bromide molecules to V1 = —493 ±16, V2 = 595 ± 18, and V3 = 2006 ± 6 cm−1 with the trans conformer being more stable than the gauche conformer by 44 ± 20 cm−1. The trans form is found experimentally to be more stable in the liquid phase by 30 ± 14 cm−1 (83 ± 40 cal mol−1). From the relative intensities, in the Raman spectra, of the CCl stretches measured as a function of temperature, the gauche conformer of the chloride molecules to be 167 ± 71 cm−1 (479 ± 203 cal mol−1) more stable than the trans conformer in the gas phase, and 73 ± 10 cm−1 (208 ± 29 cal mol−1) more stable in the liquid phase. The methyl torsions for the gauche and trans conformers of both molecules are tentatively assigned in the gas phase and the barriers have been calculated. The results of this study are compared with previous studies on these molecules.  相似文献   

20.
《Polyhedron》1986,5(8):1351-1355
A 1H NMR study of the rate of exchange of 1,1,3,3-tetramethylurea (tmu) on [Tm(tmu)6]3+ is found to be independent of [tmu] over a five-fold variation in CD3CN solution, and to be characterized by k(298.2 K) = 145 ± 1 s−1, ΔH# = 29.3±0.3 kJ mol−1, and ΔS# = 105±1 J K−1 mol−1. These data are discussed in conjunction with data from related lanthanide and pseudo-lanthanide systems and the mechanistic implications are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号