首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a novel phenomenon in which vortices are produced due to resonant oscillations of a scalar field which is driven by a periodically varying temperature T, with T remaining much below the critical temperature T(c). Also, in a rapid heating of a localized region to a temperature below T(c), far separated vortex and antivortex can form. We compare our results with recent models of defect production during reheating after inflation. We also discuss possible experimental tests of our predictions of topological defect production without ever going through a phase transition.  相似文献   

2.
Effects of normal-state resistivity rho(n) on the vortex phase diagram at low temperature T have been studied based on dc and ac complex resistivities for thick amorphous MoxSi(1-x) films. It is commonly observed irrespective of rho(n) that, in the limit T=0, the vortex-glass-transition line B(g)(T) is independent of T and extrapolates to a field below the T=0 upper critical field B(c2)(0), indicative of the quantum-vortex-liquid (QVL) phase in the regime B(g)(0)相似文献   

3.
Magnetization and ac-susceptibility measurements are used to characterize the mixed phase of the high-temperature cuprate superconductor La2-xSrxCuO4 over a large range of doping (0.075 0.20). The first order vortex lattice phase transition line HFOT(T), the upper critical field Hc2(T) and the second peak Hsp(T) have been investigated up to high magnetic fields (8 Tesla applied perpendicular to the CuO2 planes). Our results reveal a strong doping dependence of the magnetic phase diagram, which can mainly be explained by the increasing anisotropy with underdoping. Within our interpretation, the first order vortex lattice phase transition is due to the sublimation (rather than melting) of the vortex lattice into a gas of pancake vortices, whereas the second peak is related to the transition to a more disordered vortex glass state.  相似文献   

4.
The low-temperature thermal expansion of CeCoIn(5) single crystals measured parallel and perpendicular to magnetic fields B oriented along the c axis yields the volume thermal-expansion coefficient β. Considerable deviations of β(T) from Fermi-liquid behavior occur already within the superconducting region of the (B, T) phase diagram and become maximal at the upper critical field B(c2)(0). However, β(T) and the Grüneisen parameter Γ are incompatible with a quantum critical point at B(c2)(0), but allow for a quantum criticality shielded by superconductivity and extending to negative pressures for B相似文献   

5.
We report on results of electrical resistivity and structural investigations on the cubic modification of FeGe under high pressure. The long-wavelength helical order (T(C) = 280 K) is suppressed at a critical pressure p(c) approximately 19 GPa. An anomaly at T(X)(p) and strong deviations from a Fermi-liquid behavior in a wide pressure range above p(c) suggest that the suppression of T(C) disagrees with the standard notion of a quantum critical phase transition. The metallic ground state persisting at high pressure can be described by band-structure calculations if zero-point motion is included. The shortest FeGe interatomic distance display discontinuous changes in the pressure dependence close to the T(C)(p) phase line.  相似文献   

6.
Resistively shunted junction dynamics is applied to the three-dimensional uniformly frustrated XY model with randomly perturbed couplings, as a model for driven steady states in a type-II superconductor with quenched point pinning. For a disorder strength p strong enough to produce a vortex glass in equilibrium, we map the phase diagram as a function of temperature T and uniform driving current I. Using finite size analysis and averaging over many realizations of quenched randomness we find a first-order melting T(m)(I) from a vortex line smectic to an anisotropic liquid.  相似文献   

7.
The phase diagram for the vortex states of high- T(c) superconductors with point defects in the B--> parallel to c axis is drawn by large-scale Monte Carlo simulations. The vortex slush (VS) phase is found between the vortex glass (VG) and vortex liquid (VL) phases. The first-order transition between this novel normal phase and the VL phase is characterized by a sharp jump of the density of dislocations. The first-order transition between the Bragg glass (BG) and VG or VS phases is also clarified. These two transitions are compared with the melting transition between the BG and VL phases.  相似文献   

8.
The vortex-matter 3D to 2D phase transition is studied in micron-sized Bi(2)Sr(2)CaCu(2)O(8 + delta) single crystals using local Hall magnetization measurements. At a given temperature, the second magnetization peak, the signature of a possible 3D--2D vortex phase transition, disappears for samples smaller than a critical length. We suggest that this critical length should be equated with the 2D vortex lattice ab-plane correlation length R(2D)(c). The magnitude and temperature dependence of R(2D)(c) agree well with Larkin-Ovchinnikov collective pinning theory.  相似文献   

9.
Superfluid 3He in the angular velocity of 0.01 Omega(c2) < or = Omega < or = Omega(c2) is studied theoretically, where Omega(c2) is the upper critical field of order (1 - T/T(c)) x 10(7) rad/s. Five different phases have been found in the pressure-Omega plane. Especially, it is shown that the A-phase-core vortex experimentally found in the B phase originates from Schopohl's polar state at Omega(c2) via an A-phase mixed-twist lattice with polar cores and the normal-core lattice of Ohmi, Tsuneto, and Fujita [Prog. Theor. Phys. 70, 647 (1983)].  相似文献   

10.
We performed the first scanning tunneling spectroscopy measurements on the pyrochlore superconductor KOs2O6 (T(c)=9.6 K) in both zero magnetic field and the vortex state at several temperatures above 1.95 K. This material presents atomically flat surfaces, yielding spatially homogeneous spectra which reveal fully gapped superconductivity with a gap anisotropy of 30%. Measurements performed at fields of 2 and 6 T display a hexagonal Abrikosov flux line lattice. From the shape of the vortex cores, we extract a coherence length of 31-40 A, in agreement with the value derived from the upper critical field H(c2). We observe a reduction in size of the vortex cores (and hence the coherence length) with increasing field which is consistent with the unexpectedly high and unsaturated upper critical field reported.  相似文献   

11.
The superfluid density rho_{s}(T) identical with1/lambda;{2}(T) has been measured at 2.64 GHz in highly underdoped YBa_{2}Cu_{3}O_{6+y}, at 37 dopings with T_{c} between 3 and 17 K. Within limits set by the transition width DeltaT_{c} approximately 0.4 K, rho_{s}(T) shows no evidence of critical fluctuations as T-->T_{c}, with a mean-field-like transition and no indication of vortex unbinding. Instead, we propose that rho_{s} displays the behavior expected for a quantum phase transition in the (3+1)-dimensional XY universality class, with rho_{s0} proportional, variant(p-p_{c}), T_{c} proportional, variant(p-p_{c});{1/2}, and rho_{s}(T) proportional, variant(T_{c}-T);{1} as T-->T_{c}.  相似文献   

12.
We discovered stripe patterns of trimerization-ferroelectric domains in hexagonal REMnO(3) (RE=Ho,···,Lu) crystals (grown below ferroelectric transition temperatures (T(c)), reaching up to 1435 °C), in contrast with the vortex patterns in YMnO(3). These stripe patterns roughen with the appearance of numerous loop domains through thermal annealing just below T(c), but the stripe domain patterns turn to vortex-antivortex domain patterns through a freezing process when crystals cross T(c) even though the phase transition appears to not be Kosterlitz-Thouless-type. The experimental systematics are compared with the results of our six-state clock model simulation and also the Kibble-Zurek mechanism for trapped topological defects.  相似文献   

13.
A percolation transition in the vortex state of a superconducting 2H-NbSe2 crystal is observed in the regime where vortices form a heterogeneous phase consisting of ordered and disordered domains. The transition is signaled by a sharp increase in critical current that occurs when the volume fraction of disordered domains reaches the value P(c) = 0.26 +/- 0.04. Measurements on different vortex states show that, while the temperature of the transition depends on history and measurement speed, the value of P(c) and the critical exponent characterizing the approach to it, r = 1.97 +/- 0.66, are universal.  相似文献   

14.
Flux line lattice in type II superconductors undergoes a transition into a "disordered" phase such as vortex liquid or vortex glass, due to thermal fluctuations and random quenched disorder. We quantitatively describe the competition between the thermal fluctuations and the disorder using the Ginzburg-Landau approach. The following T-H phase diagram of YBCO emerges. There are just two distinct thermodynamical phases, the homogeneous and the crystalline one, separated by a single first order transition line. The line, however, makes a wiggle near the experimentally claimed critical point at 12 T. The "critical point" is reinterpreted as a (noncritical) Kauzmann point in which the latent heat vanishes and the line is parallel to the T axis. The magnetization, the entropy, and the specific heat discontinuities at melting compare well with experiments.  相似文献   

15.
We report a transition in the vorticity generated by a grid moving in the B phase of superfluid 3He at T相似文献   

16.
Vortex thermal fluctuations in heavily underdoped Bi(2)Sr(2)CaCu(2)O(8+delta) (T(c)=69.4 K) are studied using Josephson plasma resonance. From the zero-field data, we obtain the c-axis penetration depth lambda(L,c)(0)=230+/-10 micrometer and the anisotropy ratio gamma(T). The low plasma frequency allows us to study phase correlations over the whole vortex solid state and to extract a wandering length r(w) of vortex pancakes. The temperature dependence of r(w) as well as its increase with dc magnetic field is explained by the renormalization of the vortex line tension by the fluctuations, suggesting that this softening is responsible for the dissociation of the vortices at the first order transition.  相似文献   

17.
18.
At a generic quantum critical point, the thermal expansion alpha is more singular than the specific heat c(p). Consequently, the "Grüneisen ratio," Gamma=alpha/c(p), diverges. When scaling applies, Gamma approximately T(-1/(nu z)) at the critical pressure p=p(c), providing a means to measure the scaling dimension of the most relevant operator that pressure couples to; in the alternative limit T-->0 and p not equal p(c), Gamma approximately 1/(p-p(c)) with a prefactor that is, up to the molar volume, a simple universal combination of critical exponents. For a magnetic-field driven transition, similar relations hold for the magnetocaloric effect (1/T) partial differential T/ partial differential H|(S). Finally, we determine the corrections to scaling in a class of metallic quantum critical points.  相似文献   

19.
闻海虎 《物理》2000,29(2):69-75
简要回顾了近10年来,高温超导体磁通动力学领域中理论和实验上的一些重要进展。在理论领域中,Fisher等人提出的涡旋玻璃理论改变了人们对磁通运动耗散的认识,因此在此着重介绍。在涡旋态的相图方面,尽管目前还没有彻底弄清楚,但理论和实验研究均展示出了非常丰富的物理内容。还对实验中所发现的一些重要或反常的现象进行了介绍。并对高温超导体的应用和所存在的物理问题和了简单的概述。  相似文献   

20.
Vortex-loop renormalization techniques are used to calculate the magnitude of the critical Casimir forces in superfluid films. The force is found to become appreciable when the size of the thermal vortex loops is comparable to the film thickness, and the results for TT(c). When applied to a high-T(c) superconducting film connected to a bulk sample, the Casimir force causes a voltage difference to appear between the film and the bulk, and estimates show that this may be readily measurable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号