首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this communication we show that the Josephson supercurrent in Ta--induced surface-layer UBe junction can be described in an unconventional even parity model. The key feature is the appearance of the pseudogap near the Fermi energy at low temperatures. This makes the heavy fermion system unique. Our theory fits the experimental result satisfactorily.  相似文献   

3.
Shot noise in a voltage source changes the character of the quantum (dissipative) phase transition in an ultrasmall Josephson junction: The superconductor-insulator transition transforms into the superconductor-metal transition. In the metallic phase, the IV curve probes the voltage distribution generated by shot noise, whereas in the superconducting phase, it probes the counting statistics of electrons traversing the noise junction.  相似文献   

4.
5.
The maximal supercurrent Im of a short Josephson junction formed by an edge contact of two superconducting films is calculated for the case where the junction is placed in a periodic field produced by a chain of magnetic nanoparticles. The commensurability effects occurring when the magnetic flux of a homogeneous external field H0 through an elementary cell is equal to an integral number of magnetic flux quanta Φ0 are considered. The effects give rise to additional maxima in the Im(H0) dependence.  相似文献   

6.
We have observed long-range spin-triplet supercurrents in Josephson junctions containing ferromagnetic (F) materials, which are generated by noncollinear magnetizations between a central Co/Ru/Co synthetic antiferromagnet and two outer thin F layers. Here we show that the spin-triplet supercurrent is enhanced up to 20 times after our samples are subject to a large in-plane field. This occurs because the synthetic antiferromagnet undergoes a "spin-flop" transition, whereby the two Co layer magnetizations end up nearly perpendicular to the magnetizations of the two thin F layers. We report direct experimental evidence for the spin-flop transition from scanning electron microscopy with polarization analysis and from spin-polarized neutron reflectometry. These results represent a first step toward experimental control of spin-triplet supercurrents.  相似文献   

7.
We report a direct observation of dynamical bifurcation between two plasma oscillation states of a superfluid Josephson junction. We excite the superfluid plasma resonance into a nonlinear regime by driving below the natural plasma frequency and observe a clear transition between two dynamical states. We also demonstrate bifurcation by changing the potential well with temperature variations.  相似文献   

8.
9.
We demonstrate experimentally the manipulation of supercurrent in Al-AlOx-Ti Josephson tunnel junctions by injecting quasiparticles in a Ti island from two additional tunnel-coupled Al superconducting reservoirs. Both supercurrent enhancement and quenching with respect to equilibrium are achieved. We demonstrate cooling of the Ti line by quasiparticle injection from the normal state deep into the superconducting phase. A model based on heat transport and the nonmonotonic current-voltage characteristic of a Josephson junction satisfactorily accounts for our findings.  相似文献   

10.
11.
We report the circuit simulations and experiments of millimeter-wave radiation from a high temperature superconducting(HTS) bicrystal Josephson junction(BJJ) array. To study the effects of junction characteristic parameters on radiation properties, new radiation circuit models are proposed in this paper. The series resistively and capacitively shunted junction(RCSJ) models are packaged into a Josephson junction array(JJA) model in the simulation. The current-voltage characteristics(IVCs) curve and radiation peaks are simulated and analyzed by circuit models, which are also observed from the experiment at liquid nitrogen temperature. The experimental radiation linewidth and power are in good agreement with simulated results. The presented circuit models clearly demonstrate that the inconsistency of the JJA will cause a broad linewidth and a low detected power. The junction radiation properties are also investigated at the optimal situation by circuit simulation. The results further confirm that the consistent JJA characteristic parameters can successfully narrow the radiation linewidth and increase the power of junction radiation.  相似文献   

12.
《中国物理 B》2021,30(7):77406-077406
The influence of the off-resonant circularly polarized light on the Josephson current in the time-reversal broken superconducting Weyl semimetal junctions is investigated by using the Bogoliubov–de Gennes equation and the transfer matrix approach. Both the zero momentum BCS pairing states and the finite momentum Fulde–Ferrell–Larkin–Ovchinnikov(FFLO) pairing states are considered for the Weyl superconductors. When a circularly polarized light is applied, it is shown that the current phase relation remains unchanged for the BCS pairing with the increasing of incident radiation intensity A_0. For FFLO pairing, the Josephson current exhibits the 0–π transition and periodic oscillation as a function of A_0. The dependence of free energy and critical current on A_0 are also investigated.  相似文献   

13.
We study the proximity effect between conventional superconductor and magnetic normal metal with a spin-orbit interaction of the Rashba type. Using the phenomenological Ginzburg-Landau theory and the quasiclassical Eilenberger approach it is demonstrated that the Josephson junction with such a metal as a weak link has a special nonsinusoidal current-phase relation. The ground state of this junction is characterized by the finite phase difference phi{0}, which is proportional to the strength of the spin-orbit interaction and the exchange field in the normal metal. The proposed mechanism of the phi{0} junction formation gives a direct coupling between the superconducting current and the magnetic moment in the weak link. Therefore the phi{0} junctions open interesting perspectives for the superconducting spintronics.  相似文献   

14.
A Josephson phase shift can be induced in a Josephson junction by a strategically nearby pinned Abrikosov vortex (AV). For an asymmetric distribution of an imprinted phase along the junction (controlled by the position of the AV) such a simple system is capable of rectification of ac current in a broad and tunable frequency range. The resulting rectified voltage is a consequence of the directed motion of a Josephson antivortex which forms a pair with the AV when at local equilibrium. The proposed realization of the ratchet potential by an imprinted phase is more efficient than the asymmetric geometry of the junction itself, is easily realizable experimentally, and provides rectification even in the absence of an applied magnetic field.  相似文献   

15.
We report on the first realization of a single bosonic Josephson junction, implemented by two weakly linked Bose-Einstein condensates in a double-well potential. In order to fully investigate the nonlinear tunneling dynamics we measure the density distribution in situ and deduce the evolution of the relative phase between the two condensates from interference fringes. Our results verify the predicted nonlinear generalization of tunneling oscillations in superconducting and superfluid Josephson junctions. Additionally, we confirm a novel nonlinear effect known as macroscopic quantum self-trapping, which leads to the inhibition of large amplitude tunneling oscillations.  相似文献   

16.
17.
A study is made of fluxon motion in a long Josephson junction with a local inhomogeneity (microresistor) in the presence of an alternating external current. Nonlinear resonances in the fluxon dynamics are considered. The process by which a fluxon trapped at an inhomogeneity is stochastically depinned under the influence of a periodic current is investigated analytically and numerically. Zh. Tekh. Fiz. 67, 57–61 (August 1997)  相似文献   

18.
利用半经典量子理论,研究了玻色-爱因斯坦凝聚体处于非对称的约瑟夫森结的动力学行为.结果表明双势阱中不同势阱的基态能量差与其相互作用能量的比率χ=0时,凝聚体表现为约瑟夫森效应;当χ≠0时,凝聚体中既存在量子宏观隧穿效应,又存在量子宏观局域效应. 关键词: 玻色爱因斯坦凝聚 约瑟夫森结 动力学性质  相似文献   

19.
20.
When two superconductors are connected by a weak link a supercurrent flows determined by the difference in the macroscopic quantum phases of the superconductors. Originally, this phenomenon was discovered by Josephson for the case of a weak link formed by a thin tunnel barrier. The supercurrent I is related to the phase difference ϕ through the Josephson current–phase relation, I = Icsin ϕ, with Ic, the critical current, depending on the properties of the weak link. A similar relation holds for weak links consisting of a normal metal, a semiconductor or a constriction . In all cases, the phase differenceϕ =  0 when no supercurrent flows through the junction, and ϕ increases monotonically with increasing supercurrent until the critical current is reached. Using nanolithography techniques we have succeeded in making and studying a Josephson junction with a normal metal weak link, in which we have direct access to the microscopic current-carrying states inside the link. We find that the fundamental Josephson relation can be changed fromI = Icsin ϕ toI = Icsin(ϕ + π), i.e. to a π -junction, by suitably controlling the energy distribution of the current-carrying states in the normal metal. This fundamental change in the way these Josephson junctions behave has potential implications for their use in superconducting electronics as well as (quantum) logic circuits based on superconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号