首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of tumor localizing porphyrins was evaluated with respect to their ability to elicit cutaneous photosensitivity and systemic immunosuppression, two of the most common side effects associated with photodynamic therapy. Using the murine ear swelling response as an indicator, it was found that all the non-metalloporphyrins caused cutaneous photosensitization. Immunosuppressive effects were noted using hematoporphyrin derivative (HPD) and meso-tetra(4-sulfonatophenyl)porphine if sensitization occurred immediately after photoirradiation, but none were evident using Photofrin II (PII) or meso-tetra(4-carboxyphenyl)porphine (TCPP). Subsequent studies indicated that PII and TCPP manifested a delayed type immunosuppression similar to that found following UVB photoirradiation. Manganese (III) meso-tetra(4-sulfonatophenyl)porphine, a prototype magnetic resonance imaging contrast agent, was also evaluated because of its reported demetallation in vivo. It was found to cause neither cutaneous photosensitivity nor immunosuppression.  相似文献   

2.
Photodynamic therapy (PDT) treatment of both malignant and benign skin diseases has proven to be effective, and its use is increasing worldwide. However, preclinical studies using murine models have shown that PDT of the skin inhibits cell-mediated immune reactions, as measured by the suppression of the contact hypersensitivity (CHS) reaction. We have previously demonstrated that PDT enhances IL-10 expression in treated skin, and that the kinetics of induction of IL-10 is similar to the kinetics of suppression of systemic CHS reactions by cutaneous PDT. In the following report we have expanded upon these studies to demonstrate that cutaneous PDT, using Photofrin, induces elevated levels of systemic IL-10 that persist for at least 28 days following treatment. The increase in systemic IL-10 correlates to a prolonged suppression of CHS of at least 28 days following cutaneous PDT. IL-10 has been implicated as the causative agent in the suppression of cell-mediated immune reactions by UVB and transdermal PDT. However, in the studies reported here we demonstrate that the suppression of CHS by cutaneous PDT occurs via an IL-10 independent mechanism, as administration of anti-IL-10 antibodies had no effect on the ability of PDT to induce CHS suppression. These results were further confirmed using IL-10 knockout (KO) mice. Cutaneous PDT of IL-10 KO mice resulted in CHS suppression that was not significantly different from suppression induced in wild-type mice. Thus, it appears as though IL-10 does not play a role in CHS suppression by cutaneous PDT. Suppression of cell-mediated immune reactions by UVB and transdermal PDT is reversible by IL-12, which is critical for the development of these reactions. We show that administration of exogenous IL-12 is also able to reverse CHS suppression induced by cutaneous PDT, suggesting that whereas suppression of cell-mediated immune reactions by UVB, transdermal PDT and cutaneous PDT occurs via different mechanisms, a common regulatory point exists.  相似文献   

3.
Some derivatives of hematoporphyrins are strongly retained by tumor tissue as compared to normal tissue, and exposure of these photosensitizers to radiation in the visible spectrum can cause serious biological damage. These properties have been exploited in the development of a new treatment for cancer termed photodynamic therapy (PDT). However, recent studies have also demonstrated that PDT can also induce a state of systemic immunosuppression. The purpose of this study was to determine whether PDT-induced suppression of contact hypersensitivity (CHS) responses was an active phenomenon that could be adoptively transferred by viable splenocytes from PDT-treated mice. Although induction of adoptively transferable suppressor cells in PDT-treated mice required exposure to antigen, the suppressor cells were found to be antigen nonspecific in their function. Furthermore, splenocytes from PDT-treated mice were capable of generating levels of allospecific cytotoxic T lymphocyte (CTL) activity which were comparable to those generated by normal control mice, but the ability of irradiated spleen cells from PDT-treated mice to stimulate a mixed lymphocyte response (MLR) was dramatically impaired. Finally, chromatographic separation of T cells, B cells and macrophages showed that the cell type which mediates adoptively transferable suppression of CHS responsiveness is in the macrophage lineage.  相似文献   

4.
Photodynamic therapy (PDT) is frequently accompanied by induction of systemic immunosuppression. Photochemical mechanisms underlying this effect are not completely understood. Here, we demonstrate the immunosuppressive activity of photooxidation products of protoporphyrin IX dimethyl ester (PPIX) in a murine model of contact hypersensitivity (CHS) to 2,4-dinitrofluorobenzene (DNFB). Intravenous injection of the preirradiated solution of PPIX to mice resulted in fluence-dependent suppression of the CHS. The samples of photodecomposed PPIX with suppressive effect on the CHS contained chlorin-type products, namely, two isomers of photoprotoporphyrin (pPP1 and pPP2) as main photoproducts. Concentration-dependent suppression of the CHS was also induced when purified pPP1 or pPP2 were injected to mice intravenously. These purified photoproducts exerted equal immunosuppressive activity. The highest suppression of the CHS was induced when pPP1 was injected 20 h before sensitization with DNFB. The lowest suppression was at its injection time 24 h before challenge. The pPP1-induced suppression of the CHS was adoptively transferable and was associated with generation of cells with suppressive functions. These suppressor cells inhibited the efferent phase of the CHS. Our results strongly indicate that induction of systemic immunosuppression by PDT with PPIX may proceed through photobleaching of photosensitizer and generation of photoprotoporphyrins, which can affect T cell immunity.  相似文献   

5.
Photodynamic therapy (PDT) is a promising treatment modality for malignant tumors but it is also immunosuppressive which may reduce its therapeutic efficacy. The purpose of our study was to elucidate the role of CD4+ and CD8+ T cells in PDT immunosuppression. Using silicon phthalocyanine 4 (Pc4) as photosensitizer, nontumor-bearing CD4 knockout (CD4-/-) mice and their wild type (WT) counterparts were subjected to Pc4-PDT in a manner identical to that used for tumor regression (1 cm spot size, 0.5 mg kg(-1) Pc4, 110 J cm(-2) light) to assess the effect of Pc4-PDT on cell-mediated immunity. There was a decrease in immunosuppression in CD4-/- mice compared with WT mice. We next examined the role of CD8+ T cells in Pc4-PDT-induced immunosuppression using CD8-/- mice following the same treatment regimen used for CD4-/- mice. Similar to CD4-/- mice, CD8-/- mice exhibited less immunosuppression than WT mice. Pc4-PDT-induced immunosuppression could be adoptively transferred with spleen cells from Pc4-PDT treated donor mice to syngenic naive recipients (P < 0.05) and was mediated primarily by T cells, although macrophages were also found to play a role. Procedures that limit PDT-induced immunosuppression but do not affect PDT-induced regression of tumors may prove superior to PDT alone in promoting long-term antitumor responses.  相似文献   

6.
The role of the irradiation site in the induction of suppression of the contact hypersensitivity (CHS) response following photodynamic therapy (PDT) was examined in a murine model. Laser irradiation on the flanks of nontumor-bearing Photofrin-injected mice caused suppression of the CHS response. If the irradiation was conducted on a subcutaneously implanted foil disc on the flank no immunosuppression occurred, indicating that no suppressive factor(s) of sufficient quantity to cause suppression was released from the skin, but rather irradiation of internal organs was the cause. Irradiation of tumors implanted on the flanks of mice reduced the suppression, suggesting an immunopotentiating effect of PDT. Irradiation on the thigh in the presence or absence of a tumor gave no immunosuppression. These results suggest that the anatomic site of irradiation is one determinant for the elicitation of suppression of the CHS response.  相似文献   

7.
Abstract Cell membrane DNA (cmDNA) is a form of DNA located on the surface of human and murine T-cells. It has recently been characterized as a target for photomodification by 8-methoxypsoralen (8-MOP) and long-wave ultraviolet light (UV-A). Whereas 8-MOP itself is biologically inert, photoactivated 8-MOP is covalently bound to pyrimidine bases in DNA. We have investigated the possible involvement of cmDN A photomodification in the induction of the suppression of skin allograft rejection in BALB/c mice preimmunized with 8-MOP/UV-A photodamaged alloreactive cells which mediates this allograft rejection. This suppression is demonstrated by inhibition of delayed-type hypersensitivity (DTH) and mixed leukocyte culture (MLC) responses. Splenocytes from BALB/c mice undergoing rejection of CBA/j skin graft which contained an expanded population of the effector T lymphocytes that mediate the rejection were treated with DNAse to remove cmDNA before or after treatment with 8-MOP and UV-A prior to infusion into naive BALB/c recipients. Mice that received pretreated effector cells were tested for MLC responses to CBA/j or B10 alloantigens before and after the DTH response. The DTH response of all groups of pretreated BALB/c mice to the relevant alloantigen was specifically suppressed as compared with the response of control mice. However, adoptive transfer of the suppression of the DTH response was optimally demonstrable only in syngeneic recipients of cells from donor mice treated with photodamaged alloreactive cells. Also, splenocytes from BALB/c mice immunized with photodamaged alloreactive cells demonstrated highly significant hyporesponsiveness and suppression of the MLC response of naive mice to the relevant alloantigen in the case of the primary MLC response, and to both alloantigens in the secondary MLC response which was totally eliminated by prior pretreatment of these effector cells with DNAse. Therefore, it appears that the suppression of the DTH response can be induced by pretreatment of the effector cells with DNAse and/or 8-MOP and UV-A but is adoptively transferable optimally only from mice which are recipients of photodamaged alloreactive cells. Moreover, the effectiveness of this treatment is decreased by prior removal of cmDNA from these cells. The presence of cmDNA is necessary for induction of suppression of the primary and secondary MLC responses in mice treated with photodamaged cells of allograft rejection.  相似文献   

8.
Cell membrane DNA (cmDNA) is a form of DNA located on the surface of human and murine T-cells. It has recently been characterized as a target for photomodification by 8-methoxypsoralen (8-MOP) and long-wave ultraviolet light (UV-A). Whereas 8-MOP itself is biologically inert, photoactivated 8-MOP is covalently bound to pyrimidine bases in DNA. We have investigated the possible involvement of cmDNA photomodification in the induction of the suppression of skin allograft rejection in BALB/c mice preimmunized with 8-MOP/UV-A photodamaged alloreactive cells which mediates this allograft rejection. This suppression is demonstrated by inhibition of delayed-type hypersensitivity (DTH) and mixed leukocyte culture (MLC) responses. Splenocytes from BALB/c mice undergoing rejection of CBA/j skin graft which contained an expanded population of the effector T lymphocytes that mediate the rejection were treated with DNAse to remove cmDNA before or after treatment with 8-MOP and UV-A prior to infusion into naive BALB/c recipients. Mice that received pretreated effector cells were tested for MLC responses to CBA/j or B10 alloantigens before and after the DTH response. The DTH response of all groups of pretreated BALB/c mice to the relevant alloantigen was specifically suppressed as compared with the response of control mice. However, adoptive transfer of the suppression of the DTH response was optimally demonstrable only in syngeneic recipients of cells from donor mice treated with photodamaged alloreactive cells. Also, splenocytes from BALB/c mice immunized with photodamaged alloreactive cells demonstrated highly significant hyporesponsiveness and suppression of the MLC response of naive mice to the relevant alloantigen in the case of the primary MLC response, and to both alloantigens in the secondary MLC response which was totally eliminated by prior pretreatment of these effector cells with DNAse. Therefore, it appears that the suppression of the DTH response can be induced by pretreatment of the effector cells with DNAse and/or 8-MOP and UV-A but is adoptively transferable optimally only from mice which are recipients of photodamaged alloreactive cells. Moreover, the effectiveness of this treatment is decreased by prior removal of cmDNA from these cells. The presence of cmDNA is necessary for induction of suppression of the primary and secondary MLC responses in mice treated with photodamaged cells of allograft rejection.  相似文献   

9.
Ultraviolet light exposure can impair immune responses that are not restricted to the exposed skin but is also found at other sites, i.e. systemic immunosuppression. Therefore, we investigated the UV-induced modulating effects on vaccination against hepatitis B in a mouse model. Two different mouse strains, BALB/c and C57B1/ 6, were vaccinated intramuscularly against hepatitis B. Mice were exposed to different doses of ultraviolet B (UVB) for five consecutive days on shaved back skin before the vaccination. Vaccination against hepatitis B induced cellular (delayed-type hypersensitivity [DTH] and lymphocyte stimulation test) as well as humoral immune responses in both mouse strains. The DTH responses in C57BB1/6 mice were statistically significantly higher compared with BALB/c mice. UVB exposure induced a dose-dependent suppression of cellular immunity in both strains of mice. C57B1/6 mice seemed to be more susceptible to this suppression. Anti-hepatitis B surface antibodies (total-Ig) were only marginally suppressed after UVB exposure. IgG2a and interferon-gamma levels, both indicators for Th1 immune response, were suppressed in both mouse strains after UVB exposure. In summary, UVB exposure induced a dose-dependent suppression of both cellular and humoral immune responses after hepatitis B vaccination, although the suppressive effects on humoral immunity were limited to IgG2a production. Susceptibility to UVB-induced immunomodulation depended on the strain of mice and their predilection for developing different T cell responses.  相似文献   

10.
Immunological properties of delayed-type hypersensitivity (DTH) reaction induced by cephalexin (CEX) in guinea pigs were investigated. The animals were immunized with CEX using Freund's complete adjuvant. The time course of CEX-induced erythema showed some differences compared with that of classical DTH reaction. The erythema appeared at 6 h after intradermal administration of CEX, reached maximum size at 12 to 24 h and to be visible until 72 h. By enzyme-linked immunosorbent assay, anti-CEX antibody was detected in only one of 15 animals tested. Normal animals (recipients) which had received immune sera from CEX-sensitized animals (donors) showed no skin reaction to CEX. In contrast, reaction to CEX was observed in recipient animals which had received a local transfer of lymphocytes or T cells from CEX sensitized animals. In immunopharmacological study, cyclosporin A suppressed the skin reaction but cyclophosphamide did not. Administration of carrageenan, an inhibitor of macrophage function, had no effect on expression of the reaction. Post administration (1 or 15 h) of clemastine, an anti-histamine drug, did not affect the reaction. By histological examination, the infiltrating cell-types at the reaction site were mainly composed of mononuclear cells and neutrophils, but no basophils, indicating that CEX-induced DTH reaction is tuberculin-type DTH and not a cutaneous basophil hypersensitivity reaction.  相似文献   

11.
Abstract A method is described utilizing the tetrazolium salts neotetrazolium chloride (NTC), triphenyltetrazolium chloride (TTC), C,N-diphenyl-N'-4,5-dimethylthiazol-2-yltetrazolium bromide (MTT) and various substrates to elucidate damage to the mitochondrial electron transport chain of intact cells following in vitro photodynamic therapy (PDT). Using this methodology, a portion of the dark toxicity manifested by Photofrin II (PII) was found to occur prior to entry of electrons into the transport chain through Complex I, as evidenced by the fact that the inhibition of MTT reduction was reversible by the addition of malic acid to the culture media. A second site of dark toxicity was found to be Complex IV (cytochrome oxidase). After photoirradiation of the cells, Complex I was found to be affected since malic acid could no longer reverse the inhibition of MTT reduction but it could be reversed by the addition of succinic acid, whose electrons enter the transport chain at Complex II. A second and more sensitive site of photoirradiation damage was found to be Complex IV. A region near cytochrome C was also affected by photoirradiation but appreciably less so than noted for Complexes I and IV. A kinetic analysis of MTT and TTC reduction following photoirradiation indicated that MTT reduction was sustained at a normal rate for 1 h after which it slowed down and eventually plateaued. In contrast, TTC reduction was found to be inhibited almost immediately indicating Complex IV is extremely susceptible to photoirradiation damage. Compared to other assays of mitochondrial function requiring subcellular fractionation, the use of tetrazolium salts is simpler to perform and can be done using physiologically relevant conditions.  相似文献   

12.
Abstract: A method is described utilizing the tetrazolium salts neotetrazolium chloride (NTC), triphenyltetrazolium chloride (TTC), C, N -diphenyl- N' -4,5-dimethylthiazol-2-yrtetrazolium bromide (MTT) and various substrates to elucidate damage to the mitochondrial electron transport chain of intact cells following in vitro photodynamic therapy (PDT). Using this methodology, a portion of the dark toxicity manifested by Photofrin II (PII) was found to occur prior to entry of electrons into the transport chain through Complex I, as evidenced by the fact that the inhibition of MTT reduction was reversible by the addition of malic acid to the culture media. A second site of dark toxicity was found to be Complex IV (cytochrome oxidase). After photoirradiation of the cells, Complex I was found to be affected since malic acid could no longer reverse the inhibition of MTT reduction but it could be reversed by the addition of succinic acid, whose electrons enter the transport chain at Complex II. A second and more sensitive site of photoirradiation damage was found to be Complex IV. A region near cytochrome C was also affected by photoirradiation but appreciably less so than noted for Complexes I and IV. A kinetic analysis of MTT and TTC reduction following photoirradiation indicated that MTT reduction was sustained at a normal rate for 1 h after which it slowed down and eventually plateaued. In contrast, TTC reduction was found to be inhibited almost immediately indicating Complex IV is extremely susceptible to photoirradiation damage. Compared to other assays of mitochondrial function requiring subcellular fractionation, the use of tetrazolium salts is simpler to perform and can be done using physiologically relevant conditions.  相似文献   

13.
Ultraviolet radiation (UVR) induces immunosuppression and is a major factor for development of skin cancer. Numerous efforts have been made to determine mechanisms for UVR‐induced immunosuppression and to develop strategies for prevention and treatment of UVR‐induced cancers. In the current study, we use IL‐17 receptor (IL‐17R) deficient mice to examine whether IL‐17 mediated responses have a role in UVB (290–320)‐induced immunosuppression of contact hypersensitivity responses. Results demonstrate that IL‐17 mediated responses are required for UVB‐induced immunosuppression of contact hypersensitivity responses. The systemic immune suppression and development of regulatory T cells are inhibited in UVB‐treated IL‐17R deficient mice compared to wild‐type animals. The deficiency in IL‐17R inhibits the infiltration and development of a tolerogenic myeloid cell population in UVB‐treated skin, which expresses CD11b and Gr‐1 and produces reactive oxygen species. We speculate that the development of the tolerogenic myeloid cells is dependent on IL‐17‐induced chemokines and inflammatory mediators in UVB‐treated skin. The inhibition of the tolerogenic myeloid cells may be attributed to the suppression of regulatory T cells in UVR‐treated IL‐17R?/? mice. The findings may be exploited to new strategies for prevention and treatment of UVR‐induced skin diseases and cancers.  相似文献   

14.
Immunosuppressive Effects of Silicon Phthalocyanine Photodynamic Therapy   总被引:3,自引:0,他引:3  
The purpose of this study was to determine if silicon phthalocyanine 4 (Pc 4), a second-generation photosensitizer being evaluated for the photodynamic therapy (PDT) of solid tumors, was immunosuppressive. Mice treated with Pc 4 PDT 3 days before dinitrofluorobenzene sensitization showed significant suppression of their cell-mediated immune response when compared to mice that were not exposed to PDT. The response was dose dependent, required both Pc 4 and light and occurred at a skin site remote from that exposed to the laser. The immunosuppression could not be reversed by in vivo pre-treatment of mice with antibodies to tumor necrosis factor-alpha or interleukin-10. These results provide evidence that induction of cell-mediated immunity is suppressed after Pc 4 PDT. Strategies that prevent PDT-mediated immunosuppression may therefore enhance the efficacy of this therapeutic modality.  相似文献   

15.
Abstract— After a single exposure of mice to UV radiation, their ability to generate a contact hypersensitivity (CHS) response to contact sensitizers applied epicutaneously to distant, unirradiated skin is severely impaired. It is not clear, however, if the classic delayed type hypersensitivity (DTH) reponse to exogenous antigens, injected into the subcutaneous (s.c.) space, can also be modulated by UV radiation. We report here that a single exposure of mice to UV radiation suppressed the induction of DTH to both erythrocyte and soluble protein antigens injected s.c., but did not suppress the elicitation of the response. The suppressive effect was abrogated by cyclophosphamide treatment. In addition, antigen-specific suppressor cells were found in the spleens of the mice with a decreased DTH response. Since the ability to mount a DTH response has been linked with the resistance to certain pathogenic microorganisms, we suggest that the suppression of DTH by UV radiation may have the potential to compromise host resistance to such infectious agents.  相似文献   

16.
It is well known that ultraviolet (UV) radiation induces erythema, immunosuppression and carcinogenesis. We hypothesized that chronic exposure to solar UV radiation induces adaptation that eventually prevents the suppression of acquired immunity. We studied adaptation for UV-induced immunosuppression after chronic exposure of mice to a suberythemal dose of solar simulated radiation (SSR) with Cleo Natural lamps, and subsequent exposure to an immunosuppressive dose of solar or UVB radiation (TL12). After UV dosing, the mice were sensitized and challenged with either diphenylcyclopropenone (DPCP) or picryl chloride (PCl). To assess the adaptation induced by solar simulated radiation, we measured the proliferative response and cytokine production of skin-draining lymph node cells after immunization to DPCP, the contact hypersensitivity (CHS) response to PCl, and thymine-thymine (T-T) cyclobutane dimers in the skin of mice. After induction of immunosuppression by SSR or by TL12 lamps, the proliferative response of draining lymph node cells after challenge with DPCP, or the CHS after challenge with PCl, showed significant suppression of the immune response. Chronic irradiation from SSR preceding the immunosuppressive dose of UV failed to restore the suppressed immune response. Reduced lipopolysaccharide-triggered cytokine production (of IL-12p40, IFN-gamma, IL-6 and TNF-alpha) by draining lymph node cells of mice sensitized and challenged with DPCP indicated that no adaptation is induced. In addition, the mice were not protected from T-T dimer DNA damage after chronic solar irradiation. Our studies reveal no evidence that chronic exposure to low doses of SSR induces adaptation to UV-induced suppression of acquired immunity.  相似文献   

17.
Application of Aloe barbadensis poly/oligosaccharides to UV-irradiated skin prevents photosuppression of delayed-type hypersensitivity (DTH) responses in mice. We tested the hypothesis that these carbohydrates belong to a family of biologically active, plant-derived polysaccharides that can regulate responses to injury in animal tissues. C3H mice were exposed to 5 kJ/m2 UVB from unfiltered FS40 sunlamps and treated with between 1 pg and 10 micrograms tamarind xyloglucans or control polysaccharides methylcellulose or dextran in saline. The mice were sensitized 3 days later with Candida albicans. Tamarind xyloglucans and purified Aloe poly/oligosaccharides prevented suppression of DTH responses in vivo and reduced the amount of interleukin (IL)-10 observed in UV-irradiated murine epidermis. Tamarind xyloglucans were immunoprotective at low picogram doses. In contrast, the control polysaccharides methylcellulose and dextran had no effect on immune suppression or cutaneous IL-10 at any dose. Tamarind xyloglucans and Aloe poly/oligosaccharides also prevented suppression of immune responses to alloantigen in mice exposed to 30 kJ/m2 UVB radiation. To assess the effect of the carbohydrates on keratinocytes, murine Pam212 cells were exposed to 300 J/m2 UVB radiation and treated for 1 h with tamarind xyloglucans or Aloe poly/oligosaccharides. Treatment of keratinocytes with immunoprotective carbohydrates reduced IL-10 production by approximately 50% compared with the cells treated with UV radiation alone and completely blocked suppressive activity of the culture supernatants in vivo. The tamarind xyloglucans also blocked UV-activated phosphorylation of SAPK/JNK protein but had no effect on p38 phosphorylation. These results indicate that animals, like plants, may use carbohydrates to regulate responses to environmental stimuli.  相似文献   

18.
Abstract— The tumoricidal effects of photochemotherapy with two photosensitizers, 5-ethylamino-9-diethylaminobenzo[ a ] phenothiazinium chloride (EtNBS) and benzoporphyrin derivative monoacid ring A (BPD-MA), were evaluated separately and in combination against the EMT-6 fibrosarcoma implanted subcutaneously in BALB/c mice. Animals carrying tumors 8-10 mm in diameter were divided into eight different groups (∼20/group) and subjected to various photoirradiation and drug conditions. The tumor response to photodynamic therapy (PDT) was measured as the mean tumor wet weight 2 weeks post-PDT. The combination treatment with 5.25 mg/kg EtNBS and 2.5 mg/kg BPD-MA followed by photoirradiation with 100 J/cm2 at 652 nm and then by 100 J/cm2 at 690 nm resulted in a 95% reduction in the average tumor weights compared to controls (no light, no drugs) with 76% of the mice being tumor free 2 weeks post-PDT. Because treatment with EtNBS or BPD-MA at twice the light dose and drug concentration resulted in either no significant reduction in tumor weights or increased the lethality of treatment, respectively, the data suggest that the enhanced PDT effect observed with the combination of drugs is synergistic rather than additive. Histology of tumors 24 h post-PDT with the combination of drugs showed nearly complete destruction of the tumor mass with little or no damage to the vasculature and no extravasation of red blood cells. There was no damage to the normal skin adjacent to the tumor. Fluorescence microscopy of EMT-6 cells incubated in vitro with the two photosensitizers revealed that they were localized to different intracellular compartments. The fluorescence pattern from frozen tumor tissue slices following the in vivo administration of the photosensitizers indicated a greater intracellular localization for EtNBS vs BPD-MA.  相似文献   

19.
Groups of mice were exposed to a single dose of UV radiation before or after immunization with Candida albicans. The delayed type hypersensitivity (DTH) response was markedly depressed in all UV-irradiated groups. Exposure of mice to UV radiation before sensitization induced splenic suppressor cells that, upon transfer to normal recipients, impaired the induction of DTH to Candida. In contrast, exposure of mice to UV radiation after sensitization interfered with elicitation of the DTH response, but this suppression was not transferable. These studies demonstrate that immunity to Candida albicans in mice is impaired by exposure to UV radiation and that two separate mechanisms may be involved.  相似文献   

20.
Hypericin (HYP) has been reported to have photodependent cytotoxic activity in a variety of cancer cell lines. However, this activity has yet to be rigorously tested in vivo in tumor models. In this study LNCaP, PC-3 and DU-145 cells were used to test the cytotoxic effects of HYP in vitro, precursory to an in vivo study designed to investigate the effects of HYP in an established murine model for prostate cancer. Specifically, the model used employs immunocompromised nude mice bearing the LNCaP solid tumor xenograft. In vitro cytotoxicity experiments indicated that the dose causing 50% lethality for HYP in LNCaP, PC-3 and DU-145 cells were 2.07, 2.15 and 2.23 microM, respectively, following irradiation with red light (590 nm) for 30 min at a fluence rate of 0.1 J/cm2/s. Cells treated with HYP in the absence of photoirradiation showed no signs of cytotoxicity. A tissue distribution study was also carried out using the LNCaP solid tumor model to determine whether or not HYP is distributed to the target tissue. HYP was broadly distributed in tissues studied, including LNCaP tumor xenograft tissue. Furthermore, tumor tissue eliminated HYP at a slower rate than any of the other tissues examined. Interestingly, HYP levels were maintained in serum 24 h after oral administration (5 mg/kg dose). A pilot study designed to examine the efficacy of HYP treatment in nude mice bearing LNCaP tumors conducted over 28 days suggested that HYP, in combination with photoirradiation, inhibits both tumor growth and the elevation of prostate-specific antigen levels. Although the results reported for the current studies are preliminary they do provide evidence for an application of HYP PDT to prostate cancer which warrants further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号