首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four methods were developed for the determination of intact disopyramide phosphate in the presence of its degradation product. In the first and second methods, third-derivative spectrophotometry and first derivative of the ratio spectra were used. For the third-derivative spectrophotometric method, the peak amplitude was measured at 272 nm, while for the derivative ratio spectrophotometric method, disopyramide phosphate was determined by measuring the peak amplitude at 248 and 273 nm. Both methods were used for the determination of disopyramide phosphate in the concentration range 12.5-87.5 microg/mL, with corresponding mean recovery 100.8 +/- 0.7% for the first method and 99.9 +/- 0.7% and 99.6 +/- 0.7% for the second method at 248 and 273 nm, respectively. In the third method, an ion selective electrode (ISE) was fabricated using phosphotungstic acid as an anionic exchanger, PVC as the polymer matrix, and dibutylsebacate as a plasticizer. The ISE was used for the determination of disopyramide phosphate in pure powder form in the concentration range 10(-2)-10(-5) M. The slope was found to be 58.5 (mV/decade), and the average recovery was 99.9 +/- 1.6%. The fourth method depended on the quantitative densitometric determination of the drug in concentration range of 0.25-2.5 microg/spot using silica gel 60 F245 plates and ethyl acetate-chloroform-ammonium hydroxide (85 + 10 + 5, v/v/v) as the mobile phase, with corresponding mean accuracy of 100.3 +/- 1.1%. The 4 proposed methods were found to be specific for disopyramide phosphate in presence of up to 80% of its degradation product for the spectrophotometric methods, 90% of its degradation for the densitometric method, and 40% for the ISE method. The 4 proposed procedures were successfully applied for the determination of disopyramide phosphate in Norpace capsules. Statistical comparison between the results obtained by these methods and the official method of the drug was done, and no significant differences were found.  相似文献   

2.
A binary mixture of hyoscine butylbromide and ketoprofen was determined by 4 different methods. The first involved determination of hyoscine butylbromide and ketoprofen using the ratio-spectra first-derivative spectrophotometric technique at 211 and 234 nm over the concentration ranges of 2-14 and 5-45 microg/mL with mean accuracies 99.84 +/-0.92 and 99.98+/- 0.64%, respectively. The second method utilized second-derivative spectrophotometry over the concentration ranges of 2-14 and 5-35 microg/mL with mean accuracies 99.32+/- 1.06 and 99.55+/-1.15%, respectively. The third method was based on the resolution of the 2 components by bivariate calibration depending on a simple and rapid mathematical algorithm and quantitative evaluation of the absorbances at 206 and 254 nm over concentration ranges of 2-16 and 5-35 microg/mL; mean accuracies of 100.21+/-1.30 and 100.19 +/-1.07% were obtained for hyoscine butylbromide and ketoprofen, respectively. The fourth method was reversed-phase liquid chromatography using 0.05 M ammonium dihydrogen phosphate-acetonitrile-methanol (20 + 30 + 6, v/v) as the mobile phase with ultraviolet detection at 220 nm over concentration ranges of 1-90 and 5-70 microg/mL; mean accuracies were 99.92+/-1.02 and 99.61+/- 0.98%, respectively. The suggested procedures were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical preparations. The methods retained their accuracy and precision when the standard addition technique was applied. The results obtained by applying the proposed methods were statistically analyzed and compared with those obtained by the manufacturer's method.  相似文献   

3.
Binary mixtures of diazepam and otilonium bromide are analyzed by ratio-spectra first- and second-derivative spectrophotometry. The procedures are accurate, non-destructive and do not require any separation step. Calibration graphs are linear with zero-intercept up to 50 μg/ml, r ranging from 0.9996 to 0.9999. Working wavelengths in the first- and second-derivative mode, respectively, are: diazepam 247 nm and 231 nm, otilonium bromide 262 nm and 226 nm. Limits of detection (LOD) are 0.30 and 0.12 μg/ml for diazepam and 0.063 and 0.30 μg/ml for otilonium bromide. The methods were successfully applied for determining the two drugs in laboratory mixtures and in pharmaceutical products. Received: 5 August 1996 / Revised: 16 September 1996 / Accepted: 18 September 1996  相似文献   

4.
Binary mixtures of diazepam and otilonium bromide are analyzed by ratio-spectra first- and second-derivative spectrophotometry. The procedures are accurate, non-destructive and do not require any separation step. Calibration graphs are linear with zero-intercept up to 50 μg/ml, r ranging from 0.9996 to 0.9999. Working wavelengths in the first- and second-derivative mode, respectively, are: diazepam 247 nm and 231 nm, otilonium bromide 262 nm and 226 nm. Limits of detection (LOD) are 0.30 and 0.12 μg/ml for diazepam and 0.063 and 0.30 μg/ml for otilonium bromide. The methods were successfully applied for determining the two drugs in laboratory mixtures and in pharmaceutical products. Received: 5 August 1996 / Revised: 16 September 1996 / Accepted: 18 September 1996  相似文献   

5.
A method for the determination of phenyl-beta-naphthylamine (PBN) in ternary mixtures by second-derivative spectrophotometry is described. The procedure works without any separation step of PBN from the other polymer additives. By applying the second-derivative spectrophotometry, Beer's law was valid over the range 0.25-10 micro g mL(-1). The proposed method has been applied to the determination PBN in synthetic ternary mixtures and rubber samples. A comparative study of the results obtained using the second and the third-derivative spectrophotometric methods is presented and evaluated. The derivative spectrophotometric method indicated that the amount of PBN found after extraction from the rubber samples was 0.97+/-0.02 g/100 g of sample.  相似文献   

6.
Baranowska I  Kozłowska M 《Talanta》1995,42(10):1553-1557
Chromatographic systems for the separation of amino acid mixtures on RP-18 as a stationary phase have been elaborated. The best results were obtained using methanol-water (1:1, v/v; 1:3, v/v; 1:5, v/v) as a mobile phase. The following amino acids have been examined: asparagine, arginine monohydrochloride, cystine, cysteine chloride, glycine, histidine monohydrochloride, hydroxyproline, isoleucine, leucine, lysine monochloride, methionine, ornithine monohydrochloride, phenylalanine, proline, threonine, tryptophan, tyrosine, serine, valine. Histidine (as monohydrochloride) and methionine were determined by first-, second- and third-derivative spectrophotometry in a mixture of several amino acids.  相似文献   

7.
《Analytical letters》2012,45(15):3097-3111
Abstract

The complex formation reaction between iron(III) and 4-(2-pyridylazo) resorcinol(PAR) in the presence of various water soluble surfactants((N-hexadecylpyridinium chloride (HPC), poly(vinylalcohol)(PVA), sodium dodecylsulfate(SDS), sodium N-lauroylsarcosine(SL)) alone or in combination at weakly acidic media was systematically investigated. An improved and more sensitive spectrophotometric method for the determination of iron was proposed by zero-order and third-derivative spectrophotometry using the PAR-iron(III)-HPC ternary complex system at about pH 5.2. The calibration curve was rectilinear in the ranges of 0 – 15.0 μg iron(III) in a final 10-ml on the zero-order spectrophotometry. Also, upon the third-derivative spectrophotometry, Beer's law was obeyed in the range of 0 – 8.0 μg iron(III)/10 ml by measuring the distance between the absorbance peak(λ1 = 527 nm) and the valley (λ2 = 560 nm). The apparent molar absorptivity was 4.8 × 104 1 mol?1 cm?1 in zero-order spectrophotometry, and 1.36 × 105 mol?1 cm?1 in third-derivative spectrophotometry. The effect of foreign ions was decreased within ½ – ¼-fold in comparison with the method in the presence of PVA without HPC. Especially, the third-derivative spectrophotometric method was sensitive and selective, and made possible to assay mixed sample solution containing iron(III) and copper(II), etc.  相似文献   

8.
Five simple and sensitive methods were developed for the determination of leflunomide (I) in the presence of its degradates 4-trifluoromethyl aniline (II) and 3-methyl-4-carboxy isoxazole (III). Method A was based on differential derivative spectrophotometry by measuring the delta(1)D value at 279.5 nm. Beer's law was obeyed in the concentration range of 2.00-20.00 microg/mL with mean percentage accuracy of 100.07 +/- 1.32. Method B depended on first-derivative spectrophotometry and measuring the amplitude at 253.4 nm. Beer's law was obeyed in the concentration range of 2.00-16.00 microg/mL with mean percentage accuracy of 98.42 +/- 1.61. Method C was based on the reaction of degradate (II) with 2,6-dichloroquinone-4-chloroimide (Gibbs reagent). The colored product was measured at 469 nm. Method D depended on the reaction of degradate (II) with para-dimethyl aminocinnamaldehyde (p-DAC). The absorbance of the colored product was measured at 533.4 nm. Method E utilized 3-methyl-2-benzothiazolinone hydrazone in the presence of cerric ammonium sulfate with degradate (II). The green colored product was measured at 605.5 nm. The linearity range was 40.00-280.00, 2.40-24.00, and 30-250 microg/mL with mean percentage accuracy of 100.75 +/- 1.21, 100.13 +/- 1.45, and 99.74 +/- 1.39 for Methods C-E, respectively. All variables were studied to optimize the reaction conditions. The proposed methods have been successfully applied to the analysis of leflunomide in pharmaceutical dosage forms and the results were statistically compared with that previously reported.  相似文献   

9.
Ratio subtraction and isosbestic point methods are 2 innovating spectrophotometric methods used to determine vincamine in the presence of its acid degradation product and a mixture of cinnarizine (CN) and nicergoline (NIC). Linear correlations were obtained in the concentration range from 8-40 microg/mL for vincamine (I), 6-22 microg/mL for CN (II), and 6-36 microg/mL for NIC (III), with mean accuracies 99.72 +/- 0.917% for I, 99.91 +/- 0.703% for II, and 99.58 +/- 0.847 and 99.83 +/- 1.039% for III. The ratio subtraction method was utilized for the analysis of laboratory-prepared mixtures containing different ratios of vincamine and its degradation product, and it was valid in the presence of up to 80% degradation product. CN and NIC in synthetic mixtures were analyzed by the 2 proposed methods with the total content of the mixture determined at their respective isosbestic points of 270.2 and 235.8 nm, and the content of CN was determined by the ratio subtraction method. The proposed method was validated and found to be suitable as a stability-indicating assay method for vincamine in pharmaceutical formulations. The standard addition technique was applied to validate the results and to ensure the specificity of the proposed methods.  相似文献   

10.
An improved spectrophotometric determination of uranium(VI) is proposed using 4-(2-pyridylazo)resorcinol(PAR) in the presence of benzyldimethylstearyltrimethylammonium chloride(BSTAC) as a cationic surfactant. The calibration graph is linear in the range of 0.3-60 microg/10 ml uranium(VI), measuring the absorbance at 550 nm. The reproducibility for 19.0 microg/10 ml uranium(VI) is 0.57%. The third-derivative method using the third-derivative distance (d(3)A/dlambda(3)) among lambda(1) 530 nm, lambda(3) 594 nm and lambda(2) 565 nm was also investigated.  相似文献   

11.
Three new, simple, sensitive, and accurate stability-indicating methods were developed for quantitative determination of bisacodyl in the presence of its degradation products, monoacetyl bisacodyl (I) and desacetyl bisacodyl (II), in enteric coated tablets, suppositories, and raw material. The first is a spectrodensitometric method in which the drug is separated from I and II on silica gel plates using chloroform-acetone (9 + 1, v/v) as the mobile phase with ultraviolet detection of the separated bands at 223 nm over a concentration range of 0.2-1.4 microg/band for bisacodyl with mean recovery 100.35 +/- 1.923%. The second method is fourth derivative D4 spectrophotometry, which allows determination of bisacodyl in the presence of its degradation products in raw material at 223 nm using acetonitrile as the solvent with adherence to Beer's law over the concentration range 2-18 microg/mL with mean recovery 99.77+/-1.056%. In the third method, the spectrophotometric data of bisacodyl, I, and II using absolute ethanol as solvent were processed by 3 chemometric techniques: classical least-squares, principal component regression, and partial least-squares. A training set consisting of 15 mixtures containing different ratios of bisacodyl, I, and II was used for construction of the 3 models. A validation set consisting of 6 mixtures was used to validate the prediction ability of the suggested models. The 3 chemometric methods were applicable over a concentration range between 2-14microg/mL for bisacodyl with mean recovery of 99.97+/-0.865, 100.01 +/- 0.749, and 99.97 +/- 0.616% for the 3 models, respectively. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied to the analysis of raw material and pharmaceutical formulations containing bisacodyl, except for the second method that applies only for raw material. The validity of the suggested procedures was further assessed by applying the standard addition technique; the recoveries obtained were in accordance with those given by the reference method.  相似文献   

12.
A highly sensitive spectrophotometric determination of human serum albumin (HSA) with 3',4',5',6'-tetrachlorogallein (T.Cl.Gall)-Mo(VI) complex in a Triton X-100 + polyvinyl alcohol micellar medium is proposed. This method can be used to determine up to ca. 150 micrograms/10 ml of HSA from the optical absorbance at 640 nm, and is superior in sensitivity to the other extremely sensitive spectrophotometric methods. The great sensitivity of this method results from the use of third-derivative spectrophotometry. The binding parameters of T.Cl.Gall-Mo(VI) complex to HSA are n = 77.3 and K = 1.05 x 10(4) M-1 as determined from dual double-reciprocal plots. It is suggested that the colored complex in this system may be the association complex between [HSA]m+ and [MoVI(T.Cl.Gall)2]n- involving hydrophobic interaction between HSA and T.Cl.Gall. The proposed method should also be useful for the detection and determination of some peptides (e.g. low molecular weight peptides containing basic amino acids), as well as proteins.  相似文献   

13.
Three stability-indicating assay methods were developed for the determination of tropisetron in a pharmaceutical dosage form in the presence of its degradation products. The proposed techniques are HPLC, TLC, and first-derivative spectrophotometry (1D). Acid degradation was carried out, and the degradation products were separated by TLC and identified by IR, NMR, and MS techniques. The HPLC method was based on determination of tropisetron in the presence of its acid-induced degradation product on an RP Nucleosil C18 column using methanol-water-acetonitrile-trimethylamine (65 + 20 + 15 + 0.2, v/v/v/v) mobile phase and UV detection at 285 nm. The TLC method was based on the separation of tropisetron and its acid-induced degradation products, followed by densitometric measurement of the intact spot at 285 nm. The separation was carried out on silica gel 60 F254 aluminum sheets using methanol-glacial acetic acid (22 + 3, v/v) mobile phase. The 1D method was based on the measurement of first-derivative amplitudes of tropisetron in H2O at the zero-crossing point of its acid-induced degradation product at 271.9 nm. Linearity, accuracy, and precision were found to be acceptable over concentration ranges of 40-240 microg/mL, 1-10 microg/spot, and 6-36 micro/mL for the HPLC, TLC, and 1D methods, respectively. The suggested methods were successfully applied for the determination of the drug in bulk powder, laboratory-prepared mixtures, and a commercial sample.  相似文献   

14.
Two sensitive and selective methods were developed for the determination of some oxicams, namely, lornoxicam (LOX), tenoxicam (TEX), and meloxicam (MEX), in the presence of their alkaline degradation products. The first method is based on the thin-layer chromatographic separation of the 3 drugs from their alkaline degradation products, followed by densitometric measurement of the intact drug spots for LOX, TEX, and MEX at 380, 370, and 364 nm, respectively. The developing systems used for separation are ethyl acetate-methanol-26% ammonia (17 + 3 + 0.35, v/v/v) for LOX and TEX and chloroform-n-hexane-96.0% acetic acid (18 + 1 + 1, v/v/v) for MEX. The linear ranges were 0.25-6.0 microg/spot for LOX and TEX and 0.5-10 microg/spot for MEX, with mean recoveries of 99.80 +/- 1.32, 100.57 +/- 1.34, and 100.71 +/- 1.57%, respectively. The second method is based on the liquid chromatographic separation of the 3 drugs from their alkaline degradation products on a reversed-phase C18 column, using mobile phases of methanol-acetonitrile-acetate buffer, pH 4.6 (4.5 + 0.5 + 5.0, v/v/v) for LOX and MEX and methanol-acetonitrile-acetate buffer, pH 4.6 (1.9 + 0.1 + 3.0, v/v/v) for TEX at ambient temperature. Quantification is achieved by UV detection at 280 nm, based on peak area. The linear ranges were 0.5-20 microg/mL for LOX and TEX and 1.25-50 microg/mL for MEX, with mean recoveries of 99.81 +/- 1.01, 98.90 +/- 1.61, and 100.86 +/- 1.55%, respectively. The methods were validated according to guidelines of the International Conference on Harmonization. The developed methods were successfully applied to the determination of LOX, TEX, and MEX in bulk powder, laboratory-prepared mixtures containing different percentages of degradation products, and pharmaceutical dosage forms.  相似文献   

15.
《Analytical letters》2012,45(7):1379-1397
Abstract

Spectrophotometric, colorimetric and densitometric methods for the determination of hydrochlorothiazide, benzydamine hydrochloride and clonazepam in the presence of their degradation products are described. Hydrochlorothiazide was determined in the presence of its degradation products methoxyhydrothiazide, hydroxyhydrothiazide and 5-chloro-2,4-disulfonamidoaniline applying the first and second derivative spectrophotometer at 278.8 nm and 254.4 nm, respectively, while benzydamine hydrochloride was determined in the presence of its toxic photodegradation products 5-hydroxybenzydamine and 2-B-dimethylaminopropyl-l-benzylindalolin-3-one colorimetrically using the acid dye bromophenol red and measuring the absorbance of the chloroform solution of the ion-pair formed at 425nm. Clonazepam was determined densitometrically in the presence of its degradation products carbostyril and 2-amino-2-chloro-5-nitrobenzophenone. The suggested methods determine hydrochlorothiazide, benzydamine hydrochloride and clonazepam in the presence of degradation products with mean accuracies of 99.57±0.51%, 100.04±0.41%, 100.03±0.21% and 99.84±0.34%, respectively. The proposed methods are suitable for stability testing in bulk powder and in pharmaceutical preparations.  相似文献   

16.
High-performance liquid chromatographic methods have been developed for the determination of two 6-(1-hydroxyethyl)penems, SCH 29482 (I) and FCE 22101 (II), in serum and urine. Serum samples were combined with an equal volume of methanol to remove proteins and, after centrifugation, an aliquot of the supernatant was analysed by ion-pair chromatography on a reversed-phase C18 column with hexadecyltrimethylammonium bromide as the ion-pairing agent. The compounds were detected by their ultraviolet absorbance at 305 nm for II and 322 nm for I. Urine samples were diluted, filtered and analysed by the same chromatographic procedure. At concentrations of 1-500 micrograms/ml of each compound, the within- and between-day precisions were 1.8-3.6 and 2.6-5.1%, respectively. The detection limit was 0.2 micrograms/ml for I and 0.3 micrograms/ml for II.  相似文献   

17.
Three methods are presented for the determination of trimetazidine dihydrochloride in the presence of its acid-induced degradation products. The first method was based on measurement of first-derivative D1 value of trimetazidine dihydrochloride at 282 nm over a concentration range of 8.00-56.00 microg/mL with mean percentage accuracy of 99.80+/-1.17. The second method was based on first derivative of the ratio spectra DD1 at 282 nm over the same concentration range with the percentage accuracy of 99.14+/-0.68. The third method was based on separation of trimetazidine dihydrochloride from its acid-induced degradation products followed by densitometric measurement of the spots at 215 nm. The separation was performed on silica gel 60 F254 using methanol-ammonia (100+/-1.5, v/v) as mobile phase. This method was applicable for determination of the intact drug in the presence of its degradation products over a concentration range of 2.00-9.00 microg/spot with mean percentage accuracy of 99.86+/-0.92. The proposed methods were successfully applied for the determination of trimetazidine dihydrochloride in bulk powder, laboratory-prepared mixtures containing different percentages of degradation products, and pharmaceutical dosage forms. The validity of results was assessed by applying the standard addition technique. The results obtained agreed statistically with those obtained by the reported method.  相似文献   

18.
A new RP-LC method and two new spectrophotometric methods, principal component regression (PCR) and first derivative spectrophotometry, are proposed for simultaneous determination of diflucortolone valerate (DIF) and isoconazole nitrate (ISO) in cream formulations. An isocratic system consisting of an ACE C18 column and a mobile phase composed of methanol-water (95 + 5, v/v) was used for the optimal chromatographic separation. In PCR, the concentration data matrix was prepared by using synthetic mixtures containing these drugs in methanol-water (3 + 1, v/v). The absorbance data matrix corresponding to the concentration data matrix was obtained by measuring the absorbances at 29 wavelengths in the range of 242-298 nm for DIF and ISO in the zero-order spectra of their combinations. In first derivative spectrophotometry, dA/dlambda values were measured at 247.8 nm for DIF and at 240.2 nm for ISO in first derivative spectra of the solution of DIF and ISO in methanol-water (3 + 1, v/v). The linear ranges were 4.00-48.0 microg/mL for DIF and 50.0-400 microg/mL for ISO in the LC method, and 2.40-40.0 microg/mL for DIF and 60.0-260 microg/mL for ISO in the PCR and first derivative spectrophotometric methods. These methods were validated by analyzing synthetic mixtures. These three methods were successfully applied to two pharmaceutical cream preparations.  相似文献   

19.
快速测定蜂王浆中蜂王酸的分光光度法研究   总被引:5,自引:0,他引:5  
栗风珍  唐波 《分析化学》1995,23(1):56-59
本文提出了用差示分光光度法和一阶导数分光光度法测定蜂王浆中蜂王酸的含量,差示光谱最大测定波长为(+)228.0nm;一阶导数光谱测定波长为(+)204.5nm和(-)233.5nm。线性范围为0-20μg/ml(差示分光光度法)和0-15μg/ml(一阶异数分光光度法)。二法在实际测定中具有操作简便,快速和准确度高等优点。  相似文献   

20.
Two sensitive and reproducible methods were developed and validated for the determination of ziprasidone (ZIP) in the presence of its degradation products in pure form and in pharmaceutical formulations. The fi rst method was based on reversed-phase high-performance liquid chromatography (HPLC), on a Lichrosorb RP C(18) column using water:acetonitrile:phosphoric acid (76:24:0.5 v/v/v) as the mobile phase at a fl ow rate of 1.5 mL min(-1) at ambient temperature. Quantification was achieved with UV detection at 229 nm over a concentration range of 10-500 micro g mL(-1) with mean percentage recovery of 99.71 +/- 0.55. The method retained its accuracy in presence of up to 90% of ZIP degradation products. The second method was based on TLC separation of ZIP from its degradation products followed by densitometric measurement of the intact drug spot at 247 nm. The separation was carried out on aluminium sheet of silica gel 60 F(254) using choloroform:methanol:glacial acetic acid (75:5:4.5 v/v/v) as the mobile phase, over a concentration range of 1-10 micro g per spot and mean percentage recovery of 99.26 +/- 0.39. Both methods were applied successfully to laboratory prepared mixtures and pharmaceutical capsules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号