共查询到5条相似文献,搜索用时 0 毫秒
1.
We report on results of ongoing efforts directed towards the development of a computational model for flow in diseased human carotid arteries. Recent visualizations of the flow in an exact replica of an actual diseased artery have revealed the presence of complex, three-dimensional flow structures characterized by multiple recirculation zones and the formation of unstable jets in both the internal and external arteries. Even though the flow conditions at inlet to the artery were kept steady, the experiments showed that the resulting flow downstream of the inlet was unsteady and chaotic. The present computations aim to determine whether such behavior can be captured with a practical finite-volume computational model, and to examine the impact of spatial and temporal resolution on the quality of simulations. 相似文献
2.
The results from a 3D nonisotropic algebraic stress/flux turbulence model are presented to investigate the structure of thermal density flow and the temperature distribution in a strongly curved open channel (180° bend). The numerically simulated results show that (i) several secondary flows take place at the bend cross-section 90° of the curved open channel, the feature which is not found for the isothermal flows and thermal density flow in a straight channel, and (ii) the thermocline in a curved channel is thicker than that in a straight channel due to the secondary flows-induced strong mixing process taking place in the former. Such features may be ascribed to the complex interaction of the buoyant force, the centrifugal force and the Reynolds stresses taking place only in curved channels. The simulated results are in good agreement with available experimental data, which indicates that the developed model can be applied for predicting the motion of the nonisotropic thermal density flow in the curved open channel. 相似文献
3.
A numerical simulation scheme of 3D incompressible viscous fluid in a box flow passage is developed to solve Navier–Stokes (N–S) equations by firstly taking fluid–structure interaction (FSI) into account. This numerical scheme with FSI is based on the polynomial differential quadrature (PDQ) approximation technique, in which motions of both the fluid and the solid boundary structures are well described. The flow passage investigated consists of four rectangular plates, of which two are rigid, while another two are elastic. In the simulation the elastic plates are allowed to vibrate subjected to excitation of the time-dependent dynamical pressure induced by the unsteady flow in the passage. Meanwhile, the vibrating plates change the flow pattern by producing many transient sources and sinks on the plates. The effects of FSI on the flow are evaluated by running numerical examples with the incoming flow’s Reynolds numbers of 3000, 7000 and 10,000, respectively. Numerical computations show that FSI has significant influence on both the velocity and pressure fields, and the DQ method developed here is effective for modelling 3D incompressible viscous fluid with FSI. 相似文献
4.
Koohyar Vahidkhah Vahid Abdollahi 《Communications in Nonlinear Science & Numerical Simulation》2012,17(3):1475-1484
In this paper, deformation of a mass-less elastic fiber with a fixed end, immersed in a two-dimensional viscous channel flow, is simulated numerically. The lattice-Boltzmann method (LBM) is used to solve the Newtonian flow field and the immersed-boundary method (IBM) is employed to simulate the deformation of the flexible fiber interacting with the flow. The results of this unsteady simulation including fiber deformation, fluid velocity field, and variations of the fiber length are depicted in different time-steps through the simulation time. Similar trends are observed in plots representing length change of fibers with different values of stretching constant. Also, the numerical solution reaches a steady state equivalent to the fluid channel flow over a flat plate. 相似文献
5.
Luben Cabezas-Gómez Renato César da Silva Hélio Aparecido Navarro Fernando Eduardo Milioli 《Applied Mathematical Modelling》2008
A methodology of identification and characterization of coherent structures mostly known as clusters is applied to hydrodynamic results of numerical simulation generated for the riser of a circulating fluidized bed. The numerical simulation is performed using the MICEFLOW code, which includes the two-fluids IIT’s hydrodynamic model B. The methodology for cluster characterization that is used is based in the determination of four characteristics, related to average life time, average volumetric fraction of solid, existing time fraction and frequency of occurrence. The identification of clusters is performed by applying a criterion related to the time average value of the volumetric solid fraction. A qualitative rather than quantitative analysis is performed mainly owing to the unavailability of operational data used in the considered experiments. Concerning qualitative analysis, the simulation results are in good agreement with literature. Some quantitative comparisons between predictions and experiment were also presented to emphasize the capability of the modeling procedure regarding the analysis of macroscopic scale coherent structures. 相似文献