首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a method is suggested to solve the nonlinear interval number programming problem with uncertain coefficients both in nonlinear objective function and nonlinear constraints. Based on an order relation of interval number, the uncertain objective function is transformed into two deterministic objective functions, in which the robustness of design is considered. Through a modified possibility degree, the uncertain inequality and equality constraints are changed to deterministic inequality constraints. The two objective functions are converted into a single-objective problem through the linear combination method, and the deterministic inequality constraints are treated with the penalty function method. The intergeneration projection genetic algorithm is employed to solve the finally obtained deterministic and non-constraint optimization problem. Two numerical examples are investigated to demonstrate the effectiveness of the present method.  相似文献   

2.
An equality constrained optimization problem with a deterministic objective function and constraints in the form of mathematical expectation is considered. The constraints are transformed into the Sample Average Approximation form resulting in deterministic problem. A method which combines a variable sample size procedure with line search is applied to a penalty reformulation. The method generates a sequence that converges towards first-order critical points. The final stage of the optimization procedure employs the full sample and the SAA problem is eventually solved with significantly smaller cost. Preliminary numerical results show that the proposed method can produce significant savings compared to SAA method and some heuristic sample update counterparts while generating a solution of the same quality.  相似文献   

3.
This paper considers a stochastic version of the linear continuous type knapsack problem in which the cost coefficients are random variables. The problem is to find an optimal solution and an optimal probability level of the chance constraint. This problem P0 is first transformed into a deterministic equivalent problem P. Then a subproblem with a positive parameter is introduced and a close relation between P and its subproblem is shown. Further, an auxiliary problem of the subproblem is introduced and a direct relation between P and the auxiliary problem is derived through a relation connecting the subproblem and its auxiliary problem. Fully utilizing these relations, an efficient algorithm is proposed that finds an optimal solution of P in at most O(n4) computational time where n is the number of decision variables. Finally, further research problems are discussed.  相似文献   

4.
Bounded knapsack sharing   总被引:1,自引:0,他引:1  
A bounded knapsack sharing problem is a maximin or minimax mathematical programming problem with one or more linear inequality constraints, an objective function composed of single variable continuous functions called tradeoff functions, and lower and upper bounds on the variables. A single constraint problem which can have negative or positive constraint coefficients and any type of continuous tradeoff functions (including multi-modal, multiple-valued and staircase functions) is considered first. Limiting conditions where the optimal value of a variable may be plus or minus infinity are explicitly considered. A preprocessor procedure to transform any single constraint problem to a finite form problem (an optimal feasible solution exists with finite variable values) is developed. Optimality conditions and three algorithms are then developed for the finite form problem. For piecewise linear tradeoff functions, the preprocessor and algorithms are polynomially bounded. The preprocessor is then modified to handle bounded knapsack sharing problems with multiple constraints. An optimality condition and algorithm is developed for the multiple constraint finite form problem. For multiple constraints, the time needed for the multiple constraint finite form algorithm is the time needed to solve a single constraint finite form problem multiplied by the number of constraints. Some multiple constraint problems cannot be transformed to multiple constraint finite form problems.  相似文献   

5.
The multi-choice goal programming allows the decision maker to set multi-choice aspiration levels for each goal to avoid underestimation of the decision. In this paper, we propose an alternative multi-choice goal programming formulation based on the conic scalarizing function with three contributions: (1) the alternative formulation allows the decision maker to set multi-choice aspiration levels for each goal to obtain an efficient solution in the global region, (2) the proposed formulation reduces auxiliary constraints and additional variables, and (3) the proposed model guarantees to obtain a properly efficient (in the sense of Benson) point. Finally, to demonstrate the usefulness of the proposed formulation, illustrative examples and test problems are included.  相似文献   

6.
This paper considers several probability maximization models for multi-scenario portfolio selection problems in the case that future returns in possible scenarios are multi-dimensional random variables. In order to consider occurrence probabilities and decision makers’ predictions with respect to all scenarios, a portfolio selection problem setting a weight with flexibility to each scenario is proposed. Furthermore, by introducing aspiration levels to occurrence probabilities or future target profit and maximizing the minimum aspiration level, a robust portfolio selection problem is considered. Since these problems are formulated as stochastic programming problems due to the inclusion of random variables, they are transformed into deterministic equivalent problems introducing chance constraints based on the stochastic programming approach. Then, using a relation between the variance and absolute deviation of random variables, our proposed models are transformed into linear programming problems and efficient solution methods are developed to obtain the global optimal solution. Furthermore, a numerical example of a portfolio selection problem is provided to compare our proposed models with the basic model.  相似文献   

7.
In this paper, we focus on the solution procedure of the multiobjective transportation problem (MOTP) where the cost coefficients of the objective functions, and the source and destination parameters have been expressed as interval values by the decision maker. This problem has been transformed into a classical MOTP where to minimize the interval objective function, the order relations that represent the decision maker's preference between interval profits have been defined by the right limit, left limit, centre, and half-width of an interval. The constraints with interval source and destination parameters have been converted into deterministic ones. Finally, the equivalent transformed problem has been solved by fuzzy programming technique. Numerical examples have been provided to illustrate the solution procedure for three possible cases of the original problem.  相似文献   

8.
In this paper, we consider a supply chain network design problem with popup stores which can be opened for a few weeks or months before closing seasonally in a marketplace. The proposed model is multi-period and multi-stage with multi-choice goals under inventory management constraints and formulated by 0–1 mixed integer linear programming. The design tasks of the problem involve the choice of the popup stores to be opened and the distribution network design to satisfy the demand with three multi-choice goals. The first goal is minimization of the sum of transportation costs in all stages; the second is to minimization of set up costs of popup stores; and the third goal is minimization of inventory holding and backordering costs. Revised multi-choice goal programming approach is applied to solve this mixed integer linear programming model. Also, we provide a real-world industrial case to demonstrate how the proposed model works.  相似文献   

9.
Abstract Inaccurate specification of model coefficients can lead to false or distorted findings in modeling investigations of natural resource management. Hence, this paper outlines a decision framework for optimization problems in which only the bounded set of outcomes for uncertain parameters is known. These models can be solved with standard mathematical programming software and are no larger than their deterministic equivalent. The robust approach is contrasted against deterministic analysis and is demonstrated for two applications regarding the management of natural resources. Deterministic plans are infeasible in at least 40% of cases when parameters vary from their point estimates. Inclusion of robust constraints immunizes against this infeasibility, thereby removing errors arising from false certainty. Additionally, incorporation of bounded parameters in the objective function yields interval‐valued sets containing potential outcomes. However, this increase in the general relevance of model output introduces some degree of suboptimality as deterministic plans are buffered to proactively account for potential variability. The cost of robustness increases with the simulated spread of uncertain coefficients but may be reduced through accounting for the uncertainty aversion of decision makers.  相似文献   

10.
Using the decomposition of solution of SDE, we consider the stochastic optimal control problem with anticipative controls as a family of deterministic control problems parametrized by the paths of the driving Wiener process and of a newly introduced Lagrange multiplier stochastic process (nonanticipativity equality constraint). It is shown that the value function of these problems is the unique global solution of a robust equation (random partial differential equation) associated to a linear backward Hamilton-Jacobi-Bellman stochastic partial differential equation (HJB SPDE). This appears as limiting SPDE for a sequence of random HJB PDE's when linear interpolation approximation of the Wiener process is used. Our approach extends the Wong-Zakai type results [20] from SDE to the stochastic dynamic programming equation by showing how this arises as average of the limit of a sequence of deterministic dynamic programming equations. The stochastic characteristics method of Kunita [13] is used to represent the value function. By choosing the Lagrange multiplier equal to its nonanticipative constraint value the usual stochastic (nonanticipative) optimal control and optimal cost are recovered. This suggests a method for solving the anticipative control problems by almost sure deterministic optimal control. We obtain a PDE for the “cost of perfect information” the difference between the cost function of the nonanticipative control problem and the cost of the anticipative problem which satisfies a nonlinear backward HJB SPDE. Poisson bracket conditions are found ensuring this has a global solution. The cost of perfect information is shown to be zero when a Lagrangian submanifold is invariant for the stochastic characteristics. The LQG problem and a nonlinear anticipative control problem are considered as examples in this framework  相似文献   

11.
当供应商的生产能力和销售商的需求量是随机参数时,建立了一类产品生产和运输成本问题的数学模型,它是一种随机优化模型.利用机会约束规划方法研究了在给定置信水平和其它相关约束条件时,此类随机优化问题的确定型等价式.给出了每个供应商给每个销售商的送货量,且达到了总运输成本最低.实际案例研究表明所建立的模型和求解方法有效,且分析了不同置信水平下最优值的变化,提供了选择最佳置信水平的方法.  相似文献   

12.
主要给出一类目标函数的系数、供应量和需求量均为区间数的多目标运输问题模型,根据参数的实际意义和区间数的序关系,针对所建立模型,利用区间规划的方法,将其转化为确定型的多目标运输问题,最后用模糊规划技术处理等价的多目标运输问题.数值例子表明算法的有效性和可行性.  相似文献   

13.
An LP is considered where the technology coefficients are unknown and random samples are taken to estimate them. A stochastic programming problem is formulated to find the optimal sample sizes where it is required that a confidence interval should cover the unknown deterministic optimum value by a given probability and the cost of sampling be minimum.  相似文献   

14.
This paper deals with two-stage and multi-stage stochastic programs in which the right-hand sides of the constraints are Gaussian random variables. Such problems are of interest since the use of Gaussian estimators of random variables is widespread. We introduce algorithms to find upper bounds on the optimal value of two-stage and multi-stage stochastic (minimization) programs with Gaussian right-hand sides. The upper bounds are obtained by solving deterministic mathematical programming problems with dimensions that do not depend on the sample space size. The algorithm for the two-stage problem involves the solution of a deterministic linear program and a simple semidefinite program. The algorithm for the multi-stage problem invovles the solution of a quadratically constrained convex programming problem.  相似文献   

15.
The stochastic ultimate load analysis model used in the safety analysis of engineering structures can be treated as a special case of chance-constrained problems (CCP) which minimize a stochastic cost function subject to some probabilistic constraints. Some special cases (such as a deterministic cost function with probabilistic constraints or deterministic constraints with a random cost function) for ultimate load analysis have airady been investigated by various researchers. In this paper, a generai probabilistic approach to stochastic ultimate load analysis is given. In doing so, some approximation techniques are needed due to the fact that the problems at hand are too complicated to evaluate precisely. We propose two extensions of the SQP method in which the variables appear in the algorithms inexactly. These algorithms are shown to be globally convergent for all models and locally superlinearly convergent for some special cases  相似文献   

16.
水火联合调度问题是电力系统中一类复杂的优化问题。合理安排调度周期内的水火电出力,确定一个最优发电计划,可以带来巨大的经济效益。在实际系统中,汽轮机调汽阀开启时出现的拔丝现象会使机组耗量特性产生阀点效应。忽略阀点效应,在一定程度上降低求解的精度。本文考虑带阀点效应的水火联合调度问题。该问题非凸非光滑,且带有非线性约束,直接使用确定性全局优化方法求解是相当困难的。本文使用高效的半定规划求解此问题。首先用耗量特性函数的初始周期代替其余有限的周期,并对其进行二次拉格朗日插值拟合。再通过引进0-1变量,得到整个耗量特性函数的近似,进而把问题松弛为半定规划模型。最后,采用凸规划应用软件包CVX求解一个仿真算例,得到一个近似全局最优解。  相似文献   

17.
The problem of locating a single depot among n points is considered. The objective is to minimize the sum of depot operating cost and routing cost. The best depot location is found by means of an exact algorithm that determines simultaneously both the best depot location and the associated optimal delivery routes. A global integer programming formulation of the problem is given; the model is solved by relaxing most of its constraints and by introducing them only when they are violated.  相似文献   

18.
In this paper, a multiobjective quadratic programming problem having fuzzy random coefficients matrix in the objective and constraints and the decision vector are fuzzy pseudorandom variables is considered. First, we show that the efficient solutions of fuzzy quadratic multiobjective programming problems are resolved into series-optimal-solutions of relative scalar fuzzy quadratic programming. Some theorems are proved to find an optimal solution of the relative scalar quadratic multiobjective programming with fuzzy coefficients, having decision vectors as fuzzy variables. At the end, numerical examples are illustrated in the support of the obtained results.  相似文献   

19.
In a solvable linear optimization problem, a constraint is saturated if it is binding at a certain optimal solution and it is weakly saturated if it is binding at a proper subset of the optimal set. Nonsaturation and weak saturation can be seen as redundancy phenomena in the sense that the elimination of a finite number of these constraints preserves the value of the given problem. We consider also the effect of sufficiently small perturbations of the cost coefficients in the classification of a given constraint as either saturated or nonsaturated.  相似文献   

20.
This paper discusses a manufacturing inventory model with shortages where carrying cost, shortage cost, setup cost and demand quantity are considered as fuzzy numbers. The fuzzy parameters are transformed into corresponding interval numbers and then the interval objective function has been transformed into a classical multi-objective EPQ (economic production quantity) problem. To minimize the interval objective function, the order relation that represents the decision maker’s preference between interval objective functions has been defined by the right limit, left limit, center and half width of an interval. Finally, the transformed problem has been solved by intuitionistic fuzzy programming technique. The proposed method is illustrated with a numerical example and Pareto optimality test has been applied as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号