首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 585 毫秒
1.
In this paper, we will develop the Bessel collocation method to find approximate solutions of the Chen system, which is a three‐dimensional system of ODEs with quadratic nonlinearities. This scheme consists of reducing the problem to a nonlinear algebraic equation system by expanding the approximate solutions by means of the Bessel polynomials with unknown coefficients. By help of the collocation points and the matrix operations of derivatives, the unknown coefficients of the Bessel polynomials are calculated. The accuracy and efficiency of the proposed approach are demonstrated by two numerical examples and performed with the aid of a computer code written in MAPLE. In addition, comparisons between our method and the homotopy perturbation method numerical solutions are made with the accuracy of solutions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we present a collocation method to obtain the approximate solutions of continuous population models for single and interacting species. By using the Bessel polynomials and collocation points, this method transforms population model into a matrix equation. The matrix equation corresponds to a system of nonlinear equations with the unknown Bessel coefficients. The reliability and efficiency of the proposed scheme are demonstrated by two numerical examples and performed on the computer algebraic system Maple.  相似文献   

3.
In this study, we will obtain the approximate solutions of the HIV infection model of CD4+T by developing the Bessel collocation method. This model corresponds to a class of nonlinear ordinary differential equation systems. Proposed scheme consists of reducing the problem to a nonlinear algebraic equation system by expanding the approximate solutions by means of the Bessel polynomials with unknown coefficients. The unknown coefficients of the Bessel polynomials are computed using the matrix operations of derivatives together with the collocation method. The reliability and efficiency of the proposed approach are demonstrated in the different time intervals by a numerical example. All computations have been made with the aid of a computer code written in Maple 9.  相似文献   

4.
In this paper, a collocation method is given to solve singularly perturbated two‐point boundary value problems. By using the collocation points, matrix operations and the matrix relations of the Bessel functions of the first kind and their derivatives, the boundary value problem is converted to a system of the matrix equations. By solving this system, the approximate solution is obtained. Also, an error problem is constructed by the residual function, and it is solved by the presented method. Thus, the error function is estimated, and the approximate solutions are improved. Finally, numerical examples are given to show the applicability of the method, and also, our results are compared by existing results. Copyright © 2014 JohnWiley & Sons, Ltd.  相似文献   

5.
In this paper, a collocation method is presented to find the approximate solution of high‐order linear complex differential equations in rectangular domain. By using collocation points defined in a rectangular domain and the Bessel polynomials, this method transforms the linear complex differential equations into a matrix equation. The matrix equation corresponds to a system of linear equations with the unknown Bessel coefficients. The proposed method gives the analytic solution when the exact solutions are polynomials. Numerical examples are included to demonstrate the validity and applicability of the technique and the comparisons are made with existing results. The results show the efficiency and accuracy of the present work. All of the numerical computations have been performed on a computer using a program written in MATLAB v7.6.0 (R2008a). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In this article, a numerical technique is presented for the approximate solution of the Bagley–Torvik equation, which is a class of fractional differential equations. The basic idea of this method is to obtain the approximate solution in a generalized form of the Bessel functions of the first kind. For this purpose, by using the collocation points, the matrix operations and a generalization of the Bessel functions of the first kind, this technique transforms the Bagley–Torvik equation into a system of the linear algebraic equations. Hence, by solving this system, the unknown Bessel coefficients are computed. The reliability and efficiency of the proposed scheme are demonstrated by some numerical examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the model of an electromechanical system, which is a system of linear differential equations, is studied. Haar wavelet collocation method (HWCM) is applied for finding the approximate solution of the model. HWCM reduces the system of the model into a matrix‐vector form that contains the unknown Haar coefficients, and these coefficients are easily calculated. To demonstrate the validity and applicability of HWCM, numerical solutions of the system for different parameter values in the system are presented. The obtained results demonstrate the efficiency and accuracy of the method. All of the computations are performed via a program written in Mathematica.  相似文献   

8.
9.
This paper presents an exponential matrix method for the solutions of systems of high‐order linear differential equations with variable coefficients. The problem is considered with the mixed conditions. On the basis of the method, the matrix forms of exponential functions and their derivatives are constructed, and then by substituting the collocation points into the matrix forms, the fundamental matrix equation is formed. This matrix equation corresponds to a system of linear algebraic equations. By solving this system, the unknown coefficients are determined and thus the approximate solutions are obtained. Also, an error estimation based on the residual functions is presented for the method. The approximate solutions are improved by using this error estimation. To demonstrate the efficiency of the method, some numerical examples are given and the comparisons are made with the results of other methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Identification of the Volterra system is an ill-posed problem. We propose a regularization method for solving this ill-posed problem via a multiscale collocation method with multiple regularization parameters corresponding to the multiple scales. Many highly nonlinear problems such as flight data analysis demand identifying the system of a high order. This task requires huge computational costs due to processing a dense matrix of a large order. To overcome this difficulty a compression strategy is introduced to approximate the full matrix resulted in collocation of the Volterra kernel by an appropriate sparse matrix. A numerical quadrature strategy is designed to efficiently compute the entries of the compressed matrix. Finally, numerical results of three simulation experiments are presented to demonstrate the accuracy and efficiency of the proposed method.  相似文献   

11.
In this article, we have introduced a Taylor collocation method, which is based on collocation method for solving initial-boundary value problem describing the process of cooling of a semi-infinite body by radiation. This method is based on first taking the truncated Taylor expansions of the solution function in the fractional differential equation and then substituting their matrix forms into the equation. Using collocation points, we have the system of nonlinear algebraic equation. Then, we solve the system of nonlinear algebraic equation using Maple 13 and we have the coefficients of Taylor expansion. In addition, numerical results are presented to demonstrate the effectiveness of the proposed method.  相似文献   

12.
In this work, we propose an adaptive spectral element algorithm for solving non-linear optimal control problems. The method employs orthogonal collocation at the shifted Gegenbauer–Gauss points combined with very accurate and stable numerical quadratures to fully discretize the multiple-phase integral form of the optimal control problem. The proposed algorithm relies on exploiting the underlying smoothness properties of the solutions for computing approximate solutions efficiently. In particular, the method brackets discontinuities and ‘points of nonsmoothness’ through a novel local adaptive algorithm, which achieves a desired accuracy on the discrete dynamical system equations by adjusting both the mesh size and the degree of the approximating polynomials. A rigorous error analysis of the developed numerical quadratures is presented. Finally, the efficiency of the proposed method is demonstrated on three test examples from the open literature.  相似文献   

13.
研究时间Caputo分数阶对流扩散方程的高效高阶数值方法.对于给定的时间分数阶偏微分方程,在时间和空间方向分别采用基于移位广义Jacobi函数为基底和移位Chebyshev多项式运算矩阵的谱配置法进行数值求解.这样得到的数值解可以很好地逼近一类在时间方向非光滑的方程解.最后利用一些数值例子来说明该数值方法的有效性和准确性.  相似文献   

14.
In this study, we extracted the Clique polynomials from the Cocktail party graph (CPG) and generated the generalized operational matrix of integration through the Clique polynomials of CPG. Then developed an effective computational technique called Cocktail party graphs Clique polynomial collocation method (CCCM) to obtain an approximate numerical solution for the nonlinear liquid crystal model called the Hunter-Saxton equation (HSE). The operational matrix of CPG has been used to reduce HSE into an algebraic system of nonlinear equations that makes the solution quite superficial. These nonlinear algebraic equations have been solved by the Newton Raphson method. This projected that CCCM is considerably efficacious on the computational ground for higher accuracy and convergence of numerical solutions. The solution of the HSE is presented through figures and tables for different values of and . The accuracy and efficiency of the proposed technique are analyzed based on absolute errors. We also provided the convergence and error analysis of our method and verified the results through two examples to confirm the accuracy of the theoretical results.  相似文献   

15.
This paper attempts to present a meshless method to find the optimal control of a parabolic distributed parameter system with a quadratic cost functional. The method is based on radial basis functions to approximate the solution of the optimal control problem using collocation method. In this regard, different applications of RBFs are used. To this end, the numerical solutions are obtained without any mesh generation into the domain of the problems. The proposed technique is easy to implement, efficient and yields accurate results. Numerical examples are included and a comparison is made with an existing result.  相似文献   

16.
In this work, we present the method based on radial basis functions to solve partial integro-differential equations. We focus on the parabolic type of integro-differential equations as the most common forms including the ``\emph{memory}'' of the systems. We propose to apply the collocation scheme using radial basis functions to approximate the solutions of partial integro-differential equations. Due to the presented technique, system of linear or nonlinear equations is made instead of primary problem. The method is efficient because the rate of convergence of collocation method based on radial basis functions is exponential. Some numerical examples and investigation of the experimental results show the applicability and accuracy of the method.  相似文献   

17.
In this study, fractional differential equations having quintic nonlinearity are considered by proposing an accurate numerical method based on the matching polynomial and matrix‐collocation system. This method provides an integration between matrix and fractional derivative, which makes it fast and efficient. A hybrid computer program is designed by making use of the fast algorithmic structure of the method. An error analysis technique consisting of the fractional‐based residual function is constructed to scrutinize the precision of the method. Some error tests are also performed. Figures and tables present the consistency of the approximate solutions of highly stiff model problems. All results point out that the method is effective, simple, and eligible.  相似文献   

18.
In this article, we proposed a new numerical method to obtain the approximation solution for the time-fractional Schrödinger equation based on reproducing kernel theory and collocation method. In order to overcome the weak singularity of typical solutions, we apply the integral operator to both sides of differential equation and yield a integral equation. We divided the solution of this kind equation into two parts: imaginary part and real part, and then derived the approximate solutions of the two parts in the form of series with easily computable terms in the reproducing kernel space. New bases of reproducing kernel spaces are constructed and the existence of approximate solution is proved. Numerical examples are given to show the accuracy and effectiveness of our approach.  相似文献   

19.
In this paper, a collocation method based on the Bessel polynomials is presented for the approximate solution of a class of the nonlinear Lane–Emden type equations, which have many applications in mathematical physics. The exact solution can be obtained if the exact solution is polynomial. In other cases, such as an increasing number of nodes, a good approximation can be obtained with applicable errors. In addition, the method is presented with error and stability analysis. The numerical results show the effectiveness of the method for this type of equations. Comparing the methodology with some known techniques shows that the present approach is relatively easy and highly accurate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This paper aims to develop a novel numerical approach on the basis of B-spline collocation method to approximate the solution of one-dimensional and two-dimensional nonlinear stochastic quadratic integral equations. The proposed approach is based on the hybrid of collocation method, cubic B-spline, and bi-cubic B-spline interpolation and Itô approximation. Using this method, the problem solving turns into a nonlinear system solution of equations that is solved by a suitable numerical method. Also, the convergence analysis of this numerical approach has been discussed. In the end, examples are given to test the accuracy and the implementation of the method. The results are compared with the results obtained by other methods to verify that this method is accurate and efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号