首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
The article is devoted to extension of boundary element method (BEM) for solving coupled equations in velocity and induced magnetic field for time dependent magnetohydrodynamic (MHD) flows through a rectangular pipe. The BEM is equipped with finite difference approach to solve MHD problem at high Hartmann numbers up to 106. In fact, the finite difference approach is used to approximate partial derivatives of unknown functions at boundary points respect to outward normal vector. It yields a numerical method with no singular boundary integrals. Besides, a new approach is suggested in this article where transforms 2D singular BEM's integrals to 1D nonsingular ones. The new approach reduces computational cost, significantly. Note that the stability of the numerical scheme is proved mathematically when computational domain is discretized uniformly and Hartmann number is 40 times bigger than length of boundary elements. Numerical examples show behavior of velocity and induced magnetic field across the sections.  相似文献   

2.
In this paper, a new defect correction method for the Navier-Stokes equations is presented. With solving an artificial viscosity stabilized nonlinear problem in the defect step, and correcting the residual by linearized equations in the correction step for a few steps, this combination is particularly efficient for the Navier-Stokes equations at high Reynolds numbers. In both the defect and correction steps, we use the Oseen iterative scheme to solve the discrete nonlinear equations. Furthermore, the stability and convergence of this new method are deduced, which are better than that of the classical ones. Finally, some numerical experiments are performed to verify the theoretical predictions and show the efficiency of the new combination.  相似文献   

3.
In this paper, we apply the dual reciprocity boundary elements method for the numerical solution of two‐dimensional linear and nonlinear time‐fractional modified anomalous subdiffusion equations and time‐fractional convection–diffusion equation. The fractional derivative of problems is described in the Riemann–Liouville and Caputo senses. We employ the linear radial basis function for interpolation of the nonlinear, inhomogeneous and time derivative terms. This method is improved by using a predictor–corrector scheme to overcome the nonlinearity which appears in the nonlinear problems under consideration. The accuracy and efficiency of the proposed schemes are checked by five test problems. The proposed method is employed for solving some examples in two dimensions on unit square and also in complex regions to demonstrate the efficiency of the new technique. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we apply the boundary integral equation technique and the dual reciprocity boundary elements method (DRBEM) for the numerical solution of linear and nonlinear time‐fractional partial differential equations (TFPDEs). The main aim of the present paper is to examine the applicability and efficiency of DRBEM for solving TFPDEs. We employ the time‐stepping scheme to approximate the time derivative, and the method of linear radial basis functions is also used in the DRBEM technique. This method is improved by using a predictor–corrector scheme to overcome the nonlinearity that appears in the nonlinear problems under consideration. To confirm the accuracy of the new approach, several examples are presented. The convergence of the DRBEM is studied numerically by comparing the exact solutions of the problems under investigation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A new computational method for solving the second-order nonlinear singularly perturbed boundary value problems (SPBVPs) is provided in this paper. In order to overcome a highly singular behavior very near to the boundary as being not easy to treat by numerical method, we adopt a coordinate transformation from an x-domain to a t-domain via a rescaling technique, which can reduce the singularity within the boundary layer. Then, we construct a Lie-group shooting method (LGSM) to search a missing initial condition through the finding of a suitable value of a parameter r ∈ [0, 1]. Moreover, we can derive a closed-form formula to express the initial condition in terms of r, which can be determined properly by an accurate matching to the right-boundary condition. Numerical examples are examined, showing that the present approach is highly efficient and accurate.  相似文献   

6.
In this article, we present a strategy of using rectangular and triangular Bézier surface patches for nonelement representation of 3D boundary geometries for problems of linear elasticity. The boundary generated in this way is directly incorporated in the parametric integral equation system (PIES), which has been developed by the authors. The boundary values on each surface patch are approximated by Lagrange polynomials. Three illustrative examples are presented to confirm the effectiveness of the proposed boundary representation in connection with PIES and to show good accuracy of numerical results.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 34: 51–79, 2018  相似文献   

7.
首先,我们给出了引入伴随方程(组)扩充原方程(组)的策略使给定偏微分方程(组)的扩充方程组具有对应泛瓯即,成为Lagrange系统的方法,以此为基础提出了作为偏微分方程(组)传统守恒律和对称概念的一种推广-偏微分方程(组)扩充守恒律和扩充对称的概念;其次,以得到的Lagrange系统为基础给定了确定原方程(组)扩充守恒律和扩充对称的方法,从而达到扩充给定偏微分方程(组)的首恒律和对称的目的;第三,提出了适用于一般形式微分方程(组)的计算固有守恒律的方法;第四,实现以上算法过程中,我们先把计算(扩充)守恒律和对称问题均归结为求解超定线性齐次偏微分方程组(确定方程组)的问题.然后,对此关键问题我们提出了用微分形式吴方法处理的有效算法;最后,作为方法的应用我们计算确定了非线性电报方程组在内的五个发展方程(组)的新守恒律和对称,同时也说明了方法的有效性.  相似文献   

8.
The two-grid method is a technique to solve the linear system of algebraic equations for reducing the computational cost. In this study, the two-grid procedure has been combined with the EFG method for solving nonlinear partial differential equations. The two-grid FEM has been introduced in various forms. The well-known two-grid FEM is a three-step method that has been proposed by Bajpai and Nataraj (Comput. Math. Appl. 2014;68:2277–2291) that the new proposed scheme is an ecient procedure for solving important nonlinear partial differential equations such as Navier–Stokes equation. By applying shape functions of IMLS approximation in the EFG method, a new technique that is called interpolating EFG (IEFG) can be obtained. In the current investigation, we combine the two-grid algorithm with the IEFG method for solving the nonlinear Rosenau-regularized long-wave (RRLW) equation. In other hand, we demonstrate that solutions of steps 1, 2, and 3 exist and are unique and also we achieve an error estimate for them. Moreover, three test problems in one- and two-dimensional cases are given which support accuracy and efficiency of the proposed scheme.  相似文献   

9.
助于符号计算软件Maple,通过一种构造非线性偏微分方程更一般形式行波解的直接方 法,即改进的广义射影Ricccati方程方法,求解(2 1)维色散长波方程,得到该方程的新的 更一般形式的行波解,包括扭状孤波解,钟状解,孤子解和周期解.并对部分新形式孤波解画 图示意.  相似文献   

10.
In this paper, firstly we show that the determining equations of the (1+1) dimension nonlinear differential equation with arbitrary order for the nonclassical method can be derived by the compatibility between the original equation and the invariant surface condition. Then we generalize this result to the system of the (m+1) dimension differential equations. The nonlinear Klein–Gordon equation, the (2+1)-dimensional Boussinesq equation and the generalized Nizhnik–Novikov–Veselov equation serve as examples illustrating this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号