共查询到3条相似文献,搜索用时 0 毫秒
1.
Resolution of computational aeroacoustics problems on unstructured grids with a higher-order finite volume scheme 总被引:1,自引:0,他引:1
X. Nogueira I. Colominas L. Cueto-Felgueroso F. Navarrina 《Journal of Computational and Applied Mathematics》2010,234(7):2089-2097
Computational fluid dynamics (CFD) has become increasingly used in the industry for the simulation of flows. Nevertheless, the complex configurations of real engineering problems make the application of very accurate methods that only work on structured grids difficult. From this point of view, the development of higher-order methods for unstructured grids is desirable. The finite volume method can be used with unstructured grids, but unfortunately it is difficult to achieve an order of accuracy higher than two, and the common approach is a simple extension of the one-dimensional case. The increase of the order of accuracy in finite volume methods on general unstructured grids has been limited due to the difficulty in the evaluation of field derivatives. This problem is overcome with the application of the Moving Least Squares (MLS) technique on a finite volume framework. In this work we present the application of this method (FV-MLS) to the solution of aeroacoustic problems. 相似文献
2.
This paper presents a cell-centered high order finite volume scheme for the solution of the three-dimensional (3D) Navier–Stokes equations with low Mach number. The system of non-linear equations is solved by means of a fully implicit pseudo-transient scheme. Each pseudo-time step is solved by a Newton-GMRes procedure. A local preconditioning technique is used to scale the speed of sound and to improve the system condition number for low Mach number and low cell Reynolds number. This preconditioning is applied to the AUSM+up flux vector splitting function. The method is tested on 2D and 3D low Mach number laminar flows. 相似文献
3.
Numerical spectral analysis of temporal stability of laminar duct flows with constant cross sections
A. V. Boiko Yu. M. Nechepurenko 《Computational Mathematics and Mathematical Physics》2008,48(10):1699-1714
Problems related to the temporal stability of laminar viscous incompressible flows in ducts with a constant cross section are formulated, justified, and numerically solved. For the systems of ordinary differential and algebraic equations obtained by a spatial approximation, a new dimension reduction technique is proposed and substantiated. The solutions to the reduced systems are decomposed over subspaces of modes, which considerably improves the computational stability of the method and reduces the computational costs as compared with the usual decompositions over individual modes. The optimal disturbance problem is considered as an example. Numerical results for Poiseuille flows in a square duct are presented and discussed. 相似文献