首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new formalism in the theory of linear boundary value problems involving causal functional differential equations is presented. The approach depends on the construction of a differentiable family of boundary problems into which the original boundary value problem is imbedded. The formalism then generates an initial value problem which is equivalent to the family of imbedded problems. An important aspect of the method is that the equations in the initial value algorithm are ordinary differential equations rather than functional differential equations, although nonlinear and of higher dimension. Applications of the theory to differential-delay and difference equations are given.  相似文献   

2.
球壳轴对称弯曲问题精确的挠度微分方程及其奇异摄动解   总被引:1,自引:0,他引:1  
范存旭 《应用数学和力学》1990,11(12):1103-1112
本文提出了球壳轴对称弯曲问题精确的挠度(ω)微分方程和精确的转角(dω/da)微分方程.本文重点研究了挠度微分方程的精度,基本思路是:首先假设边缘效应时经线中面位移u=0,从而建立挠度微分方程,然后再精确地证明挠度微分方程与原来微分方程内力解答完全相同.再精确地证明边缘效应时经线中面位移u=0是精确解.本文给出了挠度微分方程的奇异摄动解,最后验算了平衡条件,证明摄动解求出的内力和外荷载是完全平衡的.这一方面表明摄动解的计算是正确的;另一方面也再二次表明挠度微分方程是精确的微分方程.新微分方程的优点是:1.新微分方程和原来微分方程精度完全相同;2.新微分方程满足的边界条件非常简单;3.新微分方程便于使用摄动解;4.新微分方程可以得到挠度(ω)和转角(dω/da)的表达式.新微分方程使球壳的计算得到很大的简化.本文采用的符号与徐芝纶《弹性力学》第二版下册相同[1].  相似文献   

3.
关于拟线性混合型边界问题的概率表示   总被引:1,自引:0,他引:1  
关于某些抛物型和椭圆型偏微分方程的混合边界问题的解被表示为一类联系于Ito正向反射边界随机微分方程的反向随机微分方程的解.  相似文献   

4.
A method for computing symmetries and conservation laws of integro-differential equations is proposed. It resides in reducing an integro-differential equation to a system of boundary differential equations and in computing symmetries and conservation laws of this system. A geometry of boundary differential equations is constructed like the differential case. Results of the computation for the Smoluchowski's coagulation equation are given.  相似文献   

5.
本文利用微分不等式原理及脉冲微分方程初值问题基本理论研究了n类n阶脉冲微 分方程边值问题,得到了该边值问题解的存在性及解的存在唯一性的新的结果.  相似文献   

6.
The article presents a new general solution to a loaded differential equation and describes its properties. Solving a linear boundary value problem for loaded differential equation is reduced to the solving a system of linear algebraic equations with respect to the arbitrary vectors of general solution introduced. The system's coefficients and right sides are computed by solving the Cauchy problems for ordinary differential equations. Algorithms of constructing a new general solution and solving a linear boundary value problem for loaded differential equation are offered. Linear boundary value problem for the Fredholm integro‐differential equation is approximated by the linear boundary value problem for loaded differential equation. A mutual relationship between the qualitative properties of original and approximate problems is obtained, and the estimates for differences between their solutions are given. The paper proposes numerical and approximate methods of solving a linear boundary value problem for the Fredholm integro‐differential equation and examines their convergence, stability, and accuracy.  相似文献   

7.
A nonlinear loaded differential equation with a parameter on a finite interval is studied. The interval is partitioned by the load points, at which the values of the solution to the equation are set as additional parameters. A nonlinear boundary value problem for the considered equation is reduced to a nonlinear multipoint boundary value problem for the system of nonlinear ordinary differential equations with parameters. For fixed parameters, we obtain the Cauchy problems for ordinary differential equations on the subintervals. Substituting the values of the solutions to these problems into the boundary condition and continuity conditions at the partition points, we compose a system of nonlinear algebraic equations in parameters. A method of solving the boundary value problem with a parameter is proposed. The method is based on finding the solution to the system of nonlinear algebraic equations composed.  相似文献   

8.
The work presents the qualitative analysis of the free boundary value problem related to the invasion model for multispecies biofilms. This model is based on the continuum approach for biofilm modeling and consists of a system of nonlinear hyperbolic partial differential equations for microbial species growth and spreading, a system of semilinear elliptic partial differential equations describing the substrate trends and a system of semilinear elliptic partial differential equations accounting for the diffusion and reaction of motile species within the biofilm. The free boundary evolution is regulated by a nonlinear ordinary differential equation. Overall, this leads to a free boundary value problem essentially hyperbolic. By using the method of characteristics, the partial differential equations constituting the invasion model are converted to Volterra integral equations. Then, the fixed point theorem is used for the uniqueness and existence result. The work is completed with numerical simulations describing the invasion of nitrite oxidizing bacteria in a biofilm initially constituted by ammonium oxidizing bacteria.  相似文献   

9.
Indirect and direct boundary integral equations equivalent to the original boundary value problem of differential equation of plane elasticity are established rigorously. The unnecessity or deficiency of some customary boundary integral equations is indicated by examples and numerical comparison.  相似文献   

10.
A two-dimensional differential transformation method is employed to reduce the partial differential equations of the non-continuous thermal conductive boundary value problem to a Taylor series in a polynomial form. The partial differential equations are solved by the two-dimensional T-spectra method of differential transformation and by the use of trial initial polynomial conditions. The investigative parameters include the time-step of the differential transformation and the number of sub-domain segments. The numerical simulation results indicate that the proposed approach using the two-dimensional T-spectra method of differential transformation is applicable to the solution of non-continuous thermal conductive boundary value problems.  相似文献   

11.
In this paper, we deal with the mixed initial boundary value problem for complete second order (in time) linear differential equations in Banach spaces, in which time-derivatives occur in the boundary conditions. General wellposedness theorems are obtained (for the first time), which are used to solve the corresponding inhomogeneous problems. Examples of applications to initial boundary value problems for partial differential equations are also presented.  相似文献   

12.
In some earlier publications it has been shown that the solutions of the boundary integral equations for some mixed boundary value problems for the Helmholtz equation permit integral representations in terms of solutions of associated complicated singular algebraic ordinary differential equations. The solutions of these differential equations, however, are required to be known on some infinite interval on the real line, which is unsatisfactory from a practical point of view. In this paper, for the example of one specific boundary integral equation, the relevant solutions of the associated differential equation are expressed by integrals which contain only one unknown generalized function, the support of this generalized function is no longer unbounded but a compact subset of the real line. This generalized function is a distributional solution of the homogeneous boundary integral equation. By this null space distribution the boundary integral equation can be solved for arbitrary right-hand sides, this solution method can be considered of being analogous to the method of variation of parameters in the theory of ordinary differential equations. The nature of the singularities of the null space distribution is worked out and it is shown that the null space distribution itself can be expressed by solutions of the associated ordinary differential equation.  相似文献   

13.
The last decade has seen the introduction of several fast computational methods for solving linear partial differential equations of Mathematical Physics, e.g. the Laplace, Poisson and Helmholtz equations.In this paper, the author presents fast computational algorithms which are applicable to the alternating direction implicit (A.D.I.) methods when used to solve parabolic partial differential equations in 2 space dimensions under Dirichlet boundary conditions. Extensions to more general boundary conditions are also indicated.  相似文献   

14.
This study analyses the free vibrations of circular thin plates for simply supported, clamped and free boundary conditions. The solution method used is differential transform method (DTM), which is a semi-numerical-analytical solution technique that can be applied to various types of differential equations. By using DTM, the governing differential equations are reduced to recurrence relations and its related boundary/regularity conditions are transformed into a set of algebraic equations. The frequency equations are obtained for the possible combinations of the outer edge boundary conditions and the regularity conditions at the center of the circular plate. Numerical results for the dimensionless natural frequencies are presented and then compared to the Bessel function solution and the numerical solutions that appear in literature. It is observed that DTM is a robust and powerful tool for eigenvalue analysis of circular thin plates.  相似文献   

15.
We study a spectral problem with two complex parameters for a normal linear system of second-order ordinary differential equations on a closed interval with splitting or nonlocal boundary conditions. The results of this study are used to prove the existence and uniqueness of a generalized solution of a boundary value problem in a cylinder for a class of partial differential equations.  相似文献   

16.
A new iterative method is developed to solve the boundary-value problems for ordinary nonlinear differential equations. The method requires that only the original system of differential equations is solved once in each iteration. The initial conditions for a new iteration are evaluated directly from the given boundary conditions and the initial and boundary conditions obtained in the previous iteration, thus avoiding the necessity of solving a system of algebraic equations. The convergence proofs of the method are given. Examples of the application of the method are presented and discussed.  相似文献   

17.
针对一类二阶非线性常微分方程,利用Prüfer变换将其约化为特殊的一阶常微分方程组,从而使其求解过程得以简化.实例说明应用Prüfer变换求解一类偏微分方程边值问题的技巧.  相似文献   

18.
讨论非线性时滞脉冲中立型双曲方程的振动性质,利用平均值方法以及泛函微分不等式获得了该类方程在一类非线性边值条件下所有解振动的充分判据.结果表明,振动是由滞量和脉冲引起的.  相似文献   

19.
We present a double ultraspherical spectral methods that allow the efficient approximate solution for the parabolic partial differential equations in a square subject to the most general inhomogeneous mixed boundary conditions. The differential equations with their boundary and initial conditions are reduced to systems of ordinary differential equations for the time-dependent expansion coefficients. These systems are greatly simplified by using tensor matrix algebra, and are solved by using the step-by-step method. Numerical applications of how to use these methods are described. Numerical results obtained compare favorably with those of the analytical solutions. Accurate double ultraspherical spectral approximations for Poisson's and Helmholtz's equations are also noted. Numerical experiments show that spectral approximation based on Chebyshev polynomials of the first kind is not always better than others based on ultraspherical polynomials.  相似文献   

20.
《Applied Mathematical Modelling》2014,38(9-10):2648-2660
The finite transfer method is going to be used to solve a p system of linear ordinary differential equations. The complete problem is extended by adding the p boundary equations involved. It is chosen a fourth order scheme to obtain finite transfer expressions. A recurrence strategy is used in these equations and permits one to relate different points in the domain where boundary equations are defined. Finally a 2p algebraic system of equations is noted and solved. To show the efficiency and accuracy, the method is applied to determine the structural behavior of a bending beam with different supports and to solve a differential equation of second degree with different boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号