首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Discrete phase (DP) models are widely used in simulating dilute particle flows. In these methods point-masses that are representing parcels of particles are traced through the computational domain by evaluating local force balances. Their influence on the continuous phase is expressed by momentum exchange fields, which are based on the loss or gain of the particles’ momentum.  相似文献   

2.
The effect of numerical precision on the mean distance and on the mean coalescence time between trajectories of two random maps was investigated. It was shown that mean coalescence time between trajectories can be used to characterize regions of the phase space of the maps. The mean coalescence time between trajectories scales as a power law as a function of the numerical precision of the calculations in the contracting and transitions regions of the maps. In the contracting regions the exponent of the power law is approximately one for both maps and it is approximately two in the transition regions for both maps. In the chaotic regions, the mean coalescence time between trajectories scales as an exponential law as a function of the numerical precision of the calculations for the maps. For both maps the exponents are of the same order of magnitude in the chaotic regions.  相似文献   

3.
Notice     
This paper is concerned with the transport of solid particles in a turbulent fluid flowing through a tank. The movement of the particles is approximated by one-dimensional random walks in both discrete and continuous time. General formulae are derived for the probabilities of sedimentation and exit of the particles, and detailed results obtained for the case where their movement is strictly non-negative. It is shown how Wald's identity can be used to find approximate expressions for these probabilities. Finally, formulae are found for the distribution of the sediment on the bottom of the tank.  相似文献   

4.
Numerical integration of ODEs by standard numerical methods reduces continuous time problems to discrete time problems. Discrete time problems have intrinsic properties that are absent in continuous time problems. As a result, numerical solution of an ODE may demonstrate dynamical phenomena that are absent in the original ODE. We show that numerical integration of systems with one fast rotating phase leads to a situation of such kind: numerical solution demonstrates phenomenon of scattering on resonances that is absent in the original system.  相似文献   

5.
Adjoint techniques are a common tool in the numerical treatment of optimal control problems. They are used for efficient evaluations of the gradient of the objective in gradient-based optimization algorithms. Different adjoint techniques for the optimal control of Burgers equation with Neumann boundary control are studied. The methods differ in the point in the numerical algorithm at which the adjoints are incorporated. Discretization methods for the continuous adjoint are discussed and compared with methods applying the application of the discrete adjoint. At the example of the implicit Euler method and the Crank Nicolson method it is shown that a discretization for the adjoint problem that is adjoint to the discretized optimal control problem avoids additional errors in gradient-based optimization algorithms. The approach of discrete adjoints coincides with that of automatic differentiation tools (AD) which provide exact gradient calculations on the discrete level.  相似文献   

6.
This paper summarises the development, implementation and typical results from a new full-scale three-dimensional numerical model of the multiphase chemically reacting flow in a continuous digester. The model is based on continuity and momentum equations for wood chips and free liquid. A new sub-model describing the tangential stresses for the solid phase has been developed and incorporated into the digester model. The solution procedure that takes into account the high inter-phase friction terms and the high values of the solid pressure has been introduced. In order to illustrate the model’s performance, simulations have been carried on for the industrial digester. The results are in quantitative agreement with available field measurements and in qualitative agreement with operating personnel observations. The model utilises curvilinear body fitted coordinates and can be used to simulate the operation of various pulp digesters or any other chemical reactors working in a similar regime.  相似文献   

7.
Summary In Part I of this work, numerical methods were derived for the solution of the equations of motion of a single particle subject to a central force which conserved exactly the energy and momenta. In the present work, the methodology of Part I is extended, in part, to motion of a system of particles in that the energy and linear momentum are conserved exactly. In addition, the angular momentum will be conserved to one more order of accuracy than in conventional methods. Exact conservation of the total angular momentum results only for the lowest order numerical approximation, which is equivalent to the discrete mechanics presented elsewhere.  相似文献   

8.
Computational fluid dynamics (CFD) is used extensively by engineers to model and analyze complex issues related to hydraulic design, planning studies for future generating stations, civil maintenance and supply efficiency. In order to find the optimal position of a baffle in a rectangular primary sedimentation tank, computational investigations are performed. Also laboratory experiments are conducted to verify the numerical results and the measured velocity fields which were by Acoustic Doppler Velocimeter (ADV) are used. The GMRES algorithm as a pressure solver was used in the computational modeling. The results of computational investigations performed in the present study indicate that the favorable flow field (uniform in the settling zone) would be enhanced for the case that the baffle position provide small circulation regions volume and dissipate the kinetic energy in the tank. Also results show that the GMRES algorithm can obtain the good agreement between the results of numerical models and experimental tests.  相似文献   

9.
Buchholz  Peter 《Queueing Systems》2000,35(1-4):167-183
A new analysis method for queueing systems with general input stream and phase type service time distributions is introduced. The approach combines discrete event simulation and numerical analysis of continuous time Markov chains. Simulation is used to represent the arrival process, whereas the service process is analyzed with numerical techniques. In this way the state of the system is characterized by a probability vector rather than by a single state. The use of a distribution vector reduces the variance of result estimators such that the width of confidence intervals is often reduced compared to discrete event simulation. This, in particular, holds for measures based on rare events or states with a small probability. The analysis approach can be applied for a wide variety of result measures including stationary, transient and accumulated measures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
In the present work, the advantages of high order variational integrator methods are combined with phase lag properties for the numerical integration of the general N-body problem. Expressing the action integral at any intermediate points along the curve segment using a discrete Lagrangian that depends only on the end points of the interval, high order integrators can be obtained by defining the discrete Lagrangian in any time segment as a weighted sum on intermediate points, whose expressions for positions and velocities use Galerkin interpolation techniques. When oscillatory behavior is taken into account, the methods derived use trigonometric interpolation functions that depend on a frequency, which needs to be estimated. For that, using phase lag analysis, a new way to derive methods has been developed, that uses frequency estimation for each body at every time step. Results on special cases of the N-body problem show more stable orbits and less energy error when compared with the linear interpolation scheme. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We are interested in the reliable simulation of the sedimentation of monodisperse suspensions under the influence of body forces. At the macroscopic level, the complex interaction between the immiscible fluid and the sedimentation of a compressible phase may be governed by the Navier–Stokes equations coupled to a nonlinear advection–diffusion–reaction equation for the local solids concentration. A versatile and effective finite volume element (FVE) scheme is proposed, whose formulation relies on a stabilized finite element (FE) method with continuous piecewise linear approximation for velocity, pressure and concentration. Some numerical simulations in two and three spatial dimensions illustrate the features of the present FVE method, suggesting their applicability in a wide range of problems.  相似文献   

12.
C. Kuhn  R. Müller 《PAMM》2008,8(1):10223-10224
The variational formulation of brittle fracture as formulated for example by Francfort and Marigo in [1], where the total energy is minimized with respect to any admissible crack set and displacement field, allows the identification of crack paths, branching of preexisting cracks and even crack initiation without additional criteria. For its numerical treatment a continuous approximation of the model in the sense of Γ-convergence has been presented by Bourdin in [2]. In the regularized Francfort–Marigo model cracks are represented by an additional field variable (secondary variable) s∈[0,1] which is 0 if the material is cracked and 1 if it is undamaged. In this work, we reinterpret the crack variable as a phase field order parameter and address cracking as a phase transition problem. The crack growth is governed by the evolution equation of the order parameter which resembles the Ginzburg–Landau equation. The numerical treatment is done by finite elements combined with an implicit Euler scheme for the time integration. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Abstract. Given an ordinary differential equation on a homogeneous manifold, one can construct a ``geometric integrator' by determining a compatible ordinary differential equation on the associated Lie group, using a Lie group integration scheme to construct a discrete time approximation of the solution curves in the group, and then mapping the discrete trajectories onto the homogeneous manifold using the group action. If the points of the manifold have continuous isotropy, a vector field on the manifold determines a continuous family of vector fields on the group, typically with distinct discretizations. If sufficient isotropy is present, an appropriate choice of vector field can yield improved capture of key features of the original system. In particular, if the algebra of the group is ``full,' then the order of accuracy of orbit capture (i.e., approximation of trajectories modulo time reparametrization) within a specified family of integration schemes can be increased by an appropriate choice of isotropy element. We illustrate the approach developed here with comparisons of several integration schemes for the reduced rigid body equations on the sphere.  相似文献   

14.
The motion of solid particles in a hypersonic two-phase flow of a nonviscous, compressed layer in a vicinity of the point of a two-dimensional ogive is investigated. An analytical solution is obtained, which provides the means, as distinct from a numerical solution, for writing equations for particle trajectories and finding coefficients of particle, sedimentation. Bibliography: 3 titles. Translated fromObchyslyuval’na ta Prykladna Matematyka, No. 76, 1992, pp. 74–79.  相似文献   

15.
The phase control method is a non-feedback control technique which has been used for different purposes in continuous periodically driven dynamical systems. One of the main goals of this paper is to apply this control technique to the bouncing ball system, which can be seen as a paradigmatic periodically driven discrete dynamical system, and has a rather simple physical interpretation. The main idea is to apply a periodic control signal including a phase difference with respect to the periodic forcing of the initial system and to analyze its effect on the dynamics of the bouncing ball system. The numerical simulations we have carried out clearly show the strong effect of the phase of the control signal in suppressing or generating chaotic behavior and in changing the period of a periodic orbit. We have also analyzed the effect of the phase in the phenomenon of the crisis-induced intermittency, showing how the phase enhances the size of the attractor near a crisis and can induce the intermittent behavior. Finally we have analyzed the scaling behavior of the crisis by varying the phase difference between the perturbation and the external forcing.  相似文献   

16.
In this paper, we study the numerical approximations of a gradient flow associated with a phase field bending elasticity model of a vesicle membrane with prescribed volume and surface area. A spatially semi‐discrete scheme based on a mixed finite element formulation and a fully discrete in space and time scheme are analyzed. Optimal order error estimates are rigorously derived for these numerical schemes without any a priori assumption. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
We further develop our previous proposal to use hyperbolic Anosov C-systems to generate pseudorandom numbers and to use them for efficient Monte Carlo calculations in high energy particle physics. All trajectories of hyperbolic dynamical systems are exponentially unstable, and C-systems therefore have mixing of all orders, a countable Lebesgue spectrum, and a positive Kolmogorov entropy. These exceptional ergodic properties follow from the C-condition introduced by Anosov. This condition defines a rich class of dynamical systems forming an open set in the space of all dynamical systems. An important property of C-systems is that they have a countable set of everywhere dense periodic trajectories and their density increases exponentially with entropy. Of special interest are the C-systems defined on higher-dimensional tori. Such C-systems are excellent candidates for generating pseudorandom numbers that can be used in Monte Carlo calculations. An efficient algorithm was recently constructed that allows generating long C-system trajectories very rapidly. These trajectories have good statistical properties and can be used for calculations in quantum chromodynamics and in high energy particle physics.  相似文献   

18.
19.
本文给出气固悬浮体中激波感生边界层的渐近数值分析,其中计及了作用于固体粒子的Saf-fman升力.研究结果表明粒子横越边界层的迁移导致了粒子轨道的交叉,因此对目前通用的含灰气体模型应做相应的修正.本文利用匹配渐近展开方法得到了匀速运动激波后方的两相侧壁边界层方程,详细描述了在Lagrange坐标下计算颗粒相流动参数的方法,并给出了粒子浓度很低情况下的数值结果.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号