首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper introduces a new time-dependent learning effect model into a single-machine scheduling problem. The time-dependent learning effect means that the processing time of a job is assumed to be a function of total normal processing time of jobs scheduled in front of it. In most related studies, the actual job processing time is assumed to be a function of its scheduled position when the learning effect is considered in the scheduling problem. In this paper, the actual processing time of a job is assumed to be proportionate to the length and position of the already scheduled jobs. It shows that the addressed problem remains polynomially solvable for the objectives, i.e., minimization of the total completion time and minimization of the total weighted completion time. It also shows that the shortest processing time (SPT) rule provides the optimum sequence for the addressed problem.  相似文献   

2.
Minimizing of total tardiness is one of the most studied topics on single machine problems. Researchers develop a number of optimizing and heuristic methods to solve this NP-hard problem. In this paper, the problem of minimizing total tardiness is examined in a learning effect situation. The concept of learning effects describes the reduction of processing times arising from process repetition. A 0–1 integer programming model is developed to solve the problem. Also, a random search, the tabu search and the simulated annealing-based methods are proposed for the problem and the solutions of the large size problems with up to 1000 jobs are found by these methods. To the best of our knowledge, no works exists on the total tardiness problem with a learning effect tackled in this paper.  相似文献   

3.
We study the problem of scheduling n non-preemptable jobs on a single machine which is not available for processing during a given time period. The objective is to minimize the sum of the job completion times. The best known approximation algorithm for this NP-hard problem has a relative worst-case error bound of 17.6%. We present a parametric O(nlog n)-algorithm H with which better worst-case error bounds can be obtained. The best error bound calculated for the algorithm in the paper is 7.4%. In a computational experiment, we test the algorithm with the performance guarantee set to 10.2%. It turns out that randomly generated instances with up to 1000 jobs can be solved with a mean (maximum) error of 0.31% (3.18%) and a mean (maximum) computation time of 0.8 (9.7) seconds.  相似文献   

4.
In this note, we consider the scheduling problem of minimizing the sum of the weighted completion times on a single machine with one non-availability interval on the machine under the non-resumable scenario. Together with a recent 2-approximation algorithm designed by Kacem [I. Kacem, Approximation algorithm for the weighted flow-time minimization on a single machine with a fixed non-availability interval, Computers & Industrial Engineering 54 (2008) 401–410], this paper is the first successful attempt to develop a constant ratio approximation algorithm for this problem. We present two approaches to designing such an algorithm. Our best algorithm guarantees a worst-case performance ratio of 2+ε2+ε.  相似文献   

5.
We address a classical minimum flow-time, single-machine, batch-scheduling problem. Processing times and setups are assumed to be identical for all jobs and batches, respectively. Santos and Magazine (Oper. Res. Lett. 4(1985) 99) introduced an efficient solution for the relaxed (non-integer) problem. We introduce a simple rounding procedure for Santos and Magazine's solution, which guarantees optimal integer batches.  相似文献   

6.
This study addresses the problem of minimizing total tardiness on a single machine with unequal release dates. Dominance properties established in previous literatures and herein are adopted to develop branch and bound and heuristic procedures. Computational experiments were conducted to evaluate the approaches. The results revealed that the branch and bound algorithm is efficient in solving hard problems and easy problems that involve up to 50 and 500 jobs, respectively. The computational effectiveness of the heuristic is also reported.  相似文献   

7.
In this paper we consider the single machine scheduling problems with exponential sum-of-logarithm-processing-times based learning effect. By the exponential sum-of-logarithm-processing-times based learning effect, we mean that the processing time of a job is defined by an exponent function of the sum of the logarithm of the processing times of the jobs already processed. We consider the following objective functions: the makespan, the total completion time, the sum of the quadratic job completion times, the total weighted completion time and the maximum lateness. We show that the makespan minimization problem, the total completion time minimization problem and the sum of the quadratic job completion times minimization problem can be solved by the smallest (normal) processing time first (SPT) rule, respectively. We also show that the total weighted completion time minimization problem and the maximum lateness minimization problem can be solved in polynomial time under certain conditions.  相似文献   

8.
In this paper we consider the problem of scheduling n independent jobs on m identical machines incorporating machine availability and eligibility constraints while minimizing the makespan. Each machine is not continuously available at all times and each job can only be processed on specified machines. A network flow approach is used to formulate this scheduling problem into a series of maximum flow problems. We propose a polynomial time binary search algorithm to either verify the infeasibility of the problem or solve it optimally if a feasible schedule exists.  相似文献   

9.
In this paper we consider the scheduling problem with a general exponential learning effect and past-sequence-dependent (p-s-d) setup times. By the general exponential learning effect, we mean that the processing time of a job is defined by an exponent function of the total weighted normal processing time of the already processed jobs and its position in a sequence, where the weight is a position-dependent weight. The setup times are proportional to the length of the already processed jobs. We consider the following objective functions: the makespan, the total completion time, the sum of the δ ? 0th power of completion times, the total weighted completion time and the maximum lateness. We show that the makespan minimization problem, the total completion time minimization problem and the sum of the quadratic job completion times minimization problem can be solved by the smallest (normal) processing time first (SPT) rule, respectively. We also show that the total weighted completion time minimization problem and the maximum lateness minimization problem can be solved in polynomial time under certain conditions.  相似文献   

10.
This paper deals with a single machine scheduling problems with availability constraints. The unavailability of machine results from periodic maintenance activities. In our research, a periodic maintenance consists of several maintenance periods. We consider a machine should stop to maintain after a periodic time interval or to change tools after a fixed amount of jobs processed simultaneously. Each maintenance period is scheduled after a periodic time interval. We study the problems under deterministic environment and flexible maintenance considerations. Preemptive operation is not allowed. In addition, we propose a more reasonable flexible model for the real production settings. The objective is to minimize the makespan. The proposed problem is NP-hard in the strong sense and some heuristic algorithms are provided. The purpose is to present an efficient and effective heuristic algorithm so that it will be straightforward and easy to implement. Computational results show that the proposed algorithm first fit decreasing (DFF) performs well.  相似文献   

11.
This paper considers a scheduling problem with two identical parallel machines. One has unlimited capacity; the other can only run for a fixed time. A given set of jobs must be scheduled on the two machines with the goal of minimizing the sum of their completion times. The paper proposes an optimal branch and bound algorithm which employs three powerful elements, including an algorithm for computing the upper bound, a lower bound algorithm, and a fathoming condition. The branch and bound algorithm was tested on problems of various sizes and parameters. The results show that the algorithm is quite efficient to solve all the test problems. In particular, the total computation time for the hardest problem is less than 0.1 second for a set of 100 problem instances. An important finding of the tests is that the upper bound algorithm can actually find optimal solutions to a quite large number of problems.  相似文献   

12.
Production systems often experience a shock or a technological change, resulting in performance improvement. In such settings, job processing times become shorter if jobs start processing at, or after, a common critical date. This paper considers a single machine scheduling problem with step-improving processing times, where the effects are job-dependent. The objective is to minimize the total completion time. We show that the problem is NP-hard in general and discuss several special cases which can be solved in polynomial time. We formulate a Mixed Integer Programming model and develop an LP-based heuristic for the general problem. Finally, computational experiments show that the proposed heuristic yields very effective and efficient solutions.  相似文献   

13.
Brucker et al. (Math Methods Oper Res 56: 407–412, 2003) have given an O(n 2)-time algorithm for the problems , outtree and , outtree . In this note, we show that their algorithm admits an O(n log n)-time implementation.  相似文献   

14.
We consider the single machine scheduling problem to minimize total completion time with fixed jobs, precedence constraints and release dates. There are some jobs that are already fixed in the schedule. The remaining jobs are free to be assigned to any free-time intervals on the machine in such a way that they do not overlap with the fixed jobs. Each free job has a release date, and the order of processing the free jobs is restricted by the given precedence constraints. The objective is to minimize the total completion time. This problem is strongly NP-hard. Approximability of this problem is studied in this paper. When the jobs are processed without preemption, we show that the problem has a linear-time n-approximation algorithm, but no pseudopolynomial-time (1 − δ)n-approximation algorithm exists even if all the release dates are zero, for any constant δ > 0, if P ≠ NP, where n is the number of jobs; for the case that the jobs have no precedence constraints and no release dates, we show that the problem has no pseudopolynomial-time (2 − δ)-approximation algorithm, for any constant δ > 0, if P ≠ NP, and for the weighted version, we show that the problem has no polynomial-time 2q(n)-approximation algorithm and no pseudopolynomial-time q(n)-approximation algorithm, where q(n) is any given polynomial of n. When preemption is allowed, we show that the problem with independent jobs can be solved in O(n log n) time with distinct release dates, but the weighted version is strongly NP-hard even with no release dates; the problems with weighted independent jobs or with jobs under precedence constraints are shown having polynomial-time n-approximation algorithms. We also establish the relationship of the approximability between the fixed job scheduling problem and the bin-packing problem.  相似文献   

15.
We consider the problem of minimizing the total completion time in a unit-time open shop with release times where the number of machines is constant. Brucker and Krämer (1994) proved that this problem is solvable in polynomial time. However, the time complexity of the algorithm presented there is a polynom of a very high degree and, thus, the algorithm is not practicable even for a small number of machines. We give an O(n2) algorithm for the considered problem which is based on dynamic programming. The result is applied to solve a previously open problem with a special resource constraint raised by De Werra et al. (1991).  相似文献   

16.
The concept of learning process plays a key role in production environments. However, it is relatively unexplored in the flowshop setting. In this short note, we consider a permutation flowshop scheduling problem with a learning effect where the objective is to minimize the sum of completion times or flowtime. A dominance rule and several lower bounds are established to speed up the search for the optimal solution. In addition, the performances of several well-known heuristics are evaluated when the learning effect is present.  相似文献   

17.
In this paper, we address an n-job, single machine scheduling problem with an objective to minimize the flow time variance. We propose heuristic procedure based on genetic algorithms with the potential to address more generalized objective function such as weighted flow time variance. The development and implementation of the algorithm is supported with literature review and statistical analysis of the results. Some general guidelines to select the parameter values of the genetic algorithm are also developed using an experimental design approach.  相似文献   

18.
We give an algorithm to minimize the total completion time on-line on a single machine, using restarts, with a competitive ratio of 3/2. The optimal competitive ratio without using restarts is 2 for deterministic algorithms and e/(e−1)≈1.582 for randomized algorithms. This is the first restarting algorithm to minimize the total completion time that is proved to be better than an algorithm that does not restart.  相似文献   

19.
20.
In this paper, we consider the problem of minimizing the total weighted completion time on a single machine. Jobs processing times are increasing linear function of start times. First, we present some new dominance properties for this NP-hard problem. And next, using these properties, we develop a memetic algorithm for the problem. The results of computational experiments show the good performance of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号