首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose a new three-level implicit nine point compact cubic spline finite difference formulation of order two in time and four in space directions, based on cubic spline approximation in x-direction and finite difference approximation in t-direction for the numerical solution of one-space dimensional second order non-linear hyperbolic partial differential equations. We describe the mathematical formulation procedure in details and also discuss how our formulation is able to handle wave equation in polar coordinates. The proposed method when applied to a linear hyperbolic equation is also shown to be unconditionally stable. Numerical results are provided to justify the usefulness of the proposed method.  相似文献   

2.
In this paper, we propose a new three-level implicit nine point compact finite difference formulation of O(k2 + h4) based on non-polynomial tension spline approximation in r-direction and finite difference approximation in t-direction for the numerical solution of one dimensional wave equation in polar co-ordinates. We describe the mathematical formulation procedure in details and also discuss the stability of the method. Numerical results are provided to justify the usefulness of the proposed method.  相似文献   

3.
This paper details our note [6] and it is an extension of our previous works  and  which dealt with first order (both in time and space) and second order time accurate (second order in time and first order in space) implicit finite volume schemes for second order hyperbolic equations with Dirichlet boundary conditions on general nonconforming multidimensional spatial meshes introduced recently in [14]. We aim in this work (and some forthcoming studies) to get higher order (both in time and space) finite volume approximations for the exact solution of hyperbolic equations using the class of spatial generic meshes introduced recently in [14] on low order schemes from which the matrices used to compute the discrete solutions are sparse. We focus in the present contribution on the one dimensional wave equation and on one of its implicit finite volume schemes described in [4]. The implicit finite volume scheme approximating the one dimensional wave equation we consider (hereafter referred to as the basic finite volume scheme) yields linear systems to be solved successively. The matrices involved in these linear systems are tridiagonal, symmetric and definite positive. The finite volume approximate solution of the basic finite volume scheme is of order h+kh+k, where h (resp. k  ) is the mesh size of the spatial (resp. time) discretization. We construct a new finite volume approximation of order (h+k)2(h+k)2 in several discrete norms which allow us to get approximations of order two for the exact solution and its first derivatives. This new high-order approximation can be computed using linear systems whose matrices are the same ones used to compute the discrete solution of the basic finite volume scheme while the right hand sides are corrected. The construction of these right hand sides includes the approximation of some high order spatial derivatives of the exact solution. The computation of the approximation of these high order spatial derivatives can be performed using the same matrices stated above with another two tridiagonal matrices. The manner by which this new high-order approximation is constructed can be repeated to compute successively finite volume approximations of arbitrary order using the same matrices stated above. These high-order approximations can be obtained on any one dimensional admissible finite volume mesh in the sense of [13] without any condition. To reach the above results, a theoretical framework is developed and some numerical examples supporting the theory are presented. Some of the tools of this framework are new and interesting and they are stated in the one space dimension but they can be extended to several space dimensions. In particular a new and useful a prior estimate for a suitable discrete problem is developed and proved. The proof of this a prior estimate result is based essentially on the decomposition of the solution of the discrete problem into the solutions of two suitable discrete problems. A new technique is used in order to get a convenient finite volume approximation whose discrete time derivatives of order up to order two are also converging towards the solution of the wave equation and their corresponding time derivatives.  相似文献   

4.
We construct in two ways stable schemes of arbitrarily high order for one dimensional wave equation. In both cases the stability limit is independent of the order. The other construction yields also automatically stable schemes for the heterogeneous case. In this case the estimated stability limit decreases slightly with order.  相似文献   

5.
Existence of solutions for a class of doubly nonlinear evolution equations of second order is proven by studying a full discretization. The discretization combines a time stepping on a non-uniform time grid, which generalizes the well-known Störmer-Verlet scheme, with an internal approximation scheme.The linear operator acting on the zero-order term is supposed to induce an inner product, whereas the nonlinear time-dependent operator acting on the first-order time derivative is assumed to be hemicontinuous, monotone and coercive (up to some additive shift), and to fulfill a certain growth condition. The analysis also extends to the case of additional nonlinear perturbations of both the operators, provided the perturbations satisfy a certain growth and a local Hölder-type continuity condition. A priori estimates are then derived in abstract fractional Sobolev spaces.Convergence in a weak sense is shown for piecewise polynomial prolongations in time of the fully discrete solutions under suitable requirements on the sequence of time grids.  相似文献   

6.
In this paper, we present several methods of judging shape of the solitary wave and solution formulae for some nonlinear evolution equations by means of Lienard equations. Then, using the judgement methods and solution formulae, we obtain solutions of the solitary wave for some of important nonlinear evolution equations, which include generalized modified Boussinesq, generalized nonlinear wave, generalized Fisher, generalized Klein-Gordon and generalized Zakharov equations. Some new solitary-wave solutions are found for the equations.  相似文献   

7.
Implicit difference schemes of O(k4 + k2h2 + h4), where k0, h 0 are grid sizes in time and space coordinates respectively, are developed for the efficient numerical integration of the system of one space second order nonlinear hyperbolic equations with variable coefficients subject to appropriate initial and Dirichlet boundary conditions. The proposed difference method for a scalar equation is applied for the wave equation in cylindrical and spherical symmetry. The numerical examples are given to illustrate the fourth order convergence of the methods.  相似文献   

8.
In this paper, we develop implicit difference schemes of O(k4 + k2h2 + h4), where k > 0, h > 0 are grid sizes in time and space coordinates, respectively, for solving the system of two space dimensional second order nonlinear hyperbolic partial differential equations with variable coefficients having mixed derivatives subject to appropriate initial and boundary conditions. The proposed difference method for the scalar equation is applied for the solution of wave equation in polar coordinates to obtain three level conditionally stable ADI method of O(k4 + k2h2 + h4). Some physical nonlinear problems are provided to demonstrate the accuracy of the implementation.  相似文献   

9.
In this paper, we consider a variable coefficient Calogero–Degasperis equation, a variable coefficient potential Kadomstev–Petviashvili equation and the generalized (3+1)‐dimensional variable coefficient Kadomtsev–Petviashvili equation with time‐dependent coefficients. Shock wave solutions for the considered models are obtained by using ansatz method in the form of tanhp function. The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The analytical condition given by Wyler for boundary stabilization of wave equations with variable coefficients is compared with the geometrical condition derived by Yao in terms of the Riemannian geometry method for exact controllability of wave equations with variable coefficients. It is shown that these two conditions are equivalent.  相似文献   

11.
An estimate on the Hausdorff dimension of the global attractor for damped nonlinear wave equations, in two cases of nonlinear damping and linear damping, with Dirichlet boundary condition is obtained. The gained Hausdorff dimension is bounded and is independent of the concrete form of nonlinear damping term. In the case of linear damping, the gained Hausdorff dimension remains small for large damping, which conforms to the physical intuition.

  相似文献   


12.
It has been found that some nonlinear wave equations have one-loop soliton solutions. What is the dynamical behavior of the so-called one-loop soliton solution? To answer this question, the travelling wave solutions for four nonlinear wave equations are discussed. Exact explicit parametric representations of some special travelling wave solutions are given. The results of this paper show that a loop solution consists of three different breaking travelling wave solutions. It is not one real loop soliton travelling wave solution.  相似文献   

13.
In this article, the new exact travelling wave solutions of the nonlinear space‐time fractional Burger's, the nonlinear space‐time fractional Telegraph and the nonlinear space‐time fractional Fisher equations have been found. Based on a nonlinear fractional complex transformation, certain fractional partial differential equations can be turned into ordinary differential equations of integer order in the sense of the Jumarie's modified Riemann–Liouville derivative. The ‐expansion method is effective for constructing solutions to the nonlinear fractional equations, and it appears to be easier and more convenient by means of a symbolic computation system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Following the lead of [Carrillo, Arch. Ration. Mech. Anal. 147 (1999) 269-361], recently several authors have used Kru?kov's device of “doubling the variables” to prove uniqueness results for entropy solutions of nonlinear degenerate parabolic equations. In all these results, the second order differential operator is not allowed to depend explicitly on the spatial variable, which certainly restricts the range of applications of entropy solution theory. The purpose of this paper is to extend a version of Carrillo's uniqueness result to a class of degenerate parabolic equations with spatially dependent second order differential operator. The class is large enough to encompass several interesting nonlinear partial differential equations coming from the theory of porous media flow and the phenomenological theory of sedimentation-consolidation processes.  相似文献   

15.
In this paper we prove the existence and linear stability of full dimensional tori with subexponential decay for 1-dimensional nonlinear wave equation with external parameters, which relies on the method of KAM theory and the idea proposed by Bourgain [9].  相似文献   

16.
We show that it is possible to construct arbitrary order stable schemes for the homogeneous and heterogeneous wave equation in any dimension. The construction is elementary and uses formal power series techniques. We shall also calculate exact stability limits in various cases, and apparently this limit depends only on the dimension of the space.  相似文献   

17.
In this paper, we derive a new fourth order finite difference approximation based on arithmetic average discretization for the solution of three-dimensional non-linear biharmonic partial differential equations on a 19-point compact stencil using coupled approach. The numerical solutions of unknown variable u(x,y,z) and its Laplacian 2u are obtained at each internal grid point. The resulting stencil algorithm is presented which can be used to solve many physical problems. The proposed method allows us to use the Dirichlet boundary conditions directly and there is no need to discretize the derivative boundary conditions near the boundary. We also show that special treatment is required to handle the boundary conditions. The new method is tested on three problems and the results are compared with the corresponding second order approximation, which we also discuss using coupled approach.  相似文献   

18.
In this article, new stable two‐level explicit difference methods of O(kh2 + h4) for the estimates of for the two‐space dimensional quasi‐linear parabolic equation are derived, where k > 0 and h > 0 are grid sizes in time and space directions, respectively. We use a single computational cell for the methods, which are applicable to the problems both in cartesian and polar coordinates. The proposed methods have the simplicity in nature and employ the same marching type technique of solution. Numerical results obtained by the proposed methods for several different problems were compared with the exact solutions. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 250–261, 2001  相似文献   

19.
We present a new fourth order compact finite difference scheme based on off-step discretization for the solution of the system of 3D quasi-linear elliptic partial differential equations subject to appropriate Dirichlet boundary conditions. We also develop new fourth order methods to obtain the numerical solution of first order normal derivatives of the solution. In all the cases, we use only 19-grid points of a single computational cell to compute the problem. The proposed methods are directly applicable to singular problems and the problems in polar coordinates, without any modification required unlike the previously developed high order schemes of [14] and [30]. We discuss the convergence analysis of the proposed method in details. Many physical problems are solved and comparative results are given to illustrate the usefulness of the proposed methods.  相似文献   

20.
We develop computational methods for solving wave equation with van der Pol type nonlinear boundary conditions under the framework of weak solutions. Based on the wave reflection on the boundaries, we first solve the Riemann invariants by constructing two iteration mappings, and then show that the weak solution can be obtained by the integration of the Riemann invariants on the boundaries. If the compatible conditions are not satisfied or only hold with a low degree, a high‐order integration method is developed for the numerical solution. When the initial condition is sufficiently smooth and compatible conditions hold with a sufficient degree, we establish a sixth‐order finite difference scheme, which only needs to solve a linear system at any given time instance. Numerical experiments are provided to demonstrate the effectiveness of the proposed approaches. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 373–398, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号