首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this piece of work, we introduce a new idea and obtain stability interval for explicit difference schemes of O(k2+h2) for one, two and three space dimensional second-order hyperbolic equations utt=a(x,t)uxx+α(x,t)ux-2η2(x,t)u,utt=a(x,y,t)uxx+b(x,y,t)uyy+α(x,y,t)ux+β(x,y,t)uy-2η2(x,y,t)u, and utt=a(x,y,z,t)uxx+b(x,y,z,t)uyy+c(x,y,z,t)uzz+α(x,y,z,t)ux+β(x,y,z,t)uy+γ(x,y,z,t)uz-2η2(x,y,z,t)u,0<x,y,z<1,t>0 subject to appropriate initial and Dirichlet boundary conditions, where h>0 and k>0 are grid sizes in space and time coordinates, respectively. A new idea is also introduced to obtain explicit difference schemes of O(k2) in order to obtain numerical solution of u at first time step in a different manner.  相似文献   

2.
In this paper, we consider the problem of finding u = u(xyt) and p = p(t) which satisfy ut = uxx + uyy + p(t)u + ? in R × [0, T], u(xy, 0) = f(xy), (xy) ∈ R = [0, 1] × [0, 1], u is known on the boundary of R and u(xyt) = E(t), 0 < t ? T, where E(t) is known and (xy) is a given point of R. Through a function transformation, the nonlinear two-dimensional diffusion problem is transformed into a linear problem, and a backward Euler scheme is constructed. It is proved by the maximum principle that the scheme is uniquely solvable, unconditionally stable and convergent in L norm. The convergence orders of u and p are of O(τ + h2). The impact of initial data errors on the numerical solution is also considered. Numerical experiments are presented to illustrate the validity of the theoretical results.  相似文献   

3.
Parabolic inverse problems have an important role in many branches of science and technology. The aim of this research work is to solve these classes of equations using a high order compact finite difference scheme. We consider the following inverse problem for finding u(xt) and p(t) governed by ut = uxx + p(t)u + φ(xt) with an over specified condition inside the domain. Spatial derivatives are approximated using central difference scheme. The time advancement of the simulation is performed using a “third order compact Runge-Kutta method”. The convergence orders for the approximation of both u and p are of o(k3 + h2) which improves the results obtained in the literature. An exact test case is used to evaluate the validity of our numerical analysis. We found that the accuracy of the results is better than that of previous works in the literature.  相似文献   

4.
In this paper we consider a semilinear parabolic equation ut=Δuc(x,t)up for (x,t)∈Ω×(0,) with nonlinear and nonlocal boundary condition uΩ×(0,)=∫Ωk(x,y,t)uldy and nonnegative initial data where p>0 and l>0. We prove some global existence results. Criteria on this problem which determine whether the solutions blow up in finite time for large or for all nontrivial initial data are also given.  相似文献   

5.
6.
This article presents a semigroup approach to the mathematical analysis of the inverse parameter problems of identifying the unknown parameters p(t) and q in the linear parabolic equation ut(xt)  = uxx + qux(xt) + p(t)u(xt), with Dirichlet boundary conditions u(0, t) = ψ0, u(1, t) = ψ1. The main purpose of this paper is to investigate the distinguishability of the input-output mapping Φ[·]:PH1,2[0,T], via semigroup theory. In this paper, it is shown that if the nullspace of the semigroup T(t) consists of only zero function, then the input-output mapping Φ[·] has the distinguishability property. It is also shown that the types of the boundary conditions and the region on which the problem is defined play an important role in the distinguishability property of the mapping. Moreover, under the light of the measured output data ux(0, t) = f(t) the unknown parameter p(t) at (xt) = (0, 0) and the unknown coefficient q are determined via the input data. Furthermore, it is shown that measured output data f(t) can be determined analytically by an integral representation. Hence the input-output mapping Φ[·]:PH1,2[0,T] is given explicitly interms of the semigroup.  相似文献   

7.
In this article, we study the semigroup approach for the mathematical analysis of the inverse coefficient problems of identifying the unknown coefficient k(x) in the linear parabolic equation ut(x,t)=(k(x)uxx(x,t)), with Dirichlet boundary conditions u(0,t)=ψ0, u(1,t)=ψ1. Main goal of this study is to investigate the distinguishability of the input-output mappings Φ[⋅]:KC1[0,T], Ψ[⋅]:KC1[0,T] via semigroup theory. In this paper, we show that if the null space of the semigroup T(t) consists of only zero function, then the input-output mappings Φ[⋅] and Ψ[⋅] have the distinguishability property. Moreover, the values k(0) and k(1) of the unknown diffusion coefficient k(x) at x=0 and x=1, respectively, can be determined explicitly by making use of measured output data (boundary observations) f(t):=k(0)ux(0,t) or/and h(t):=k(1)ux(1,t). In addition to these, the values k(0) and k(1) of the unknown coefficient k(x) at x=0 and x=1, respectively, are also determined via the input data. Furthermore, it is shown that measured output dataf(t) and h(t) can be determined analytically, by an integral representation. Hence the input-output mappings Φ[⋅]:KC1[0,T], Ψ[⋅]:KC1[0,T] are given explicitly in terms of the semigroup. Finally by using all these results, we construct the local representations of the unknown coefficient k(x) at the end points x=0 and x=1.  相似文献   

8.
Special exact solutions of the K(2, 2) equation, ut + (u2)x + (u2)xxx = 0, are investigated by employing the qualitative theory of differential equations. Our procedure shows that the K(2, 2) equation either has loop soliton, cusped soliton and smooth soliton solutions when sitting on the non-zero constant pedestal limx→±∞u = A ≠ 0, or possesses compacton solutions only when limx→±∞u = 0. Mathematical analysis and numerical simulations are provided for these soliton solutions of the K(2, 2) equation.  相似文献   

9.
Let k(y) > 0, 𝓁(y) > 0 for y > 0, k(0) = 𝓁(0) = 0 and limy → 0k(y)/𝓁(y) exists; then the equation L(u) ≔ k(y)uxx – ∂y(𝓁(y)uy) + a(x, y)ux = f(x, y, u) is strictly hyperbolic for y > 0 and its order degenerates on the line y = 0. Consider the boundary value problem Lu = f(x, y, u) in G, u|AC = 0, where G is a simply connected domain in ℝ2 with piecewise smooth boundary ∂G = ABACBC; AB = {(x, 0) : 0 ≤ x ≤ 1}, AC : x = F(y) = ∫y0(k(t)/𝓁(t))1/2dt and BC : x = 1 – F(y) are characteristic curves. Existence of generalized solution is obtained by a finite element method, provided f(x, y, u) satisfies Carathéodory condition and |f(x, y, u)| ≤ Q(x, y) + b|u| with QL2(G), b = const > 0. It is shown also that each generalized solution is a strong solution, and that fact is used to prove uniqueness under the additional assumption |f(x, y, u1) – f(x, y, u2| ≤ C|u1u2|, where C = const > 0.  相似文献   

10.
This paper deals with ut = Δu + um(xt)epv(0,t), vt = Δv + uq(0, t)env(x,t), subject to homogeneous Dirichlet boundary conditions. The complete classification on non-simultaneous and simultaneous blow-up is obtained by four sufficient and necessary conditions. It is interesting that, in some exponent region, large initial data u0(v0) leads to the blow-up of u(v), and in some betweenness, simultaneous blow-up occurs. For all of the nonnegative exponents, we find that u(v) blows up only at a single point if m > 1(n > 0), while u(v) blows up everywhere for 0 ? m ? 1 (n = 0). Moreover, blow-up rates are considered for both non-simultaneous and simultaneous blow-up solutions.  相似文献   

11.
We prove finite time extinction of the solution of the equation ut−Δu+χ{u>0}(uβλf(u))=0 in Ω×(0,∞) with boundary data u(x,t)=0 on ∂Ω×(0,∞) and initial condition u(x,0)=u0(x) in Ω, where ΩRN is a bounded smooth domain, 0<β<1 and λ>0 is a parameter. For every small enough λ>0 there exists a time t0>0 such that the solution is identically equal to zero.  相似文献   

12.
In this paper, a class of multiobjective control problems is considered, where the objective and constraint functions involved are f(tx(t), ?(t), y(t), z(t)) with x(t) ∈ Rn, y(t) ∈ Rn, and z(t) ∈ Rm, where x(t) and z(t) are the control variables and y(t) is the state variable. Under the assumption of invexity and its generalization, duality theorems are proved through a parametric approach to related properly efficient solutions of the primal and dual problems.  相似文献   

13.
In this article, using a single computational cell, we report some stable two‐level explicit finite difference approximations of O(kh2 + h4) for ?u/?n for three‐space dimensional quasi‐linear parabolic equation, where h > 0 and k > 0 are mesh sizes in space and time directions, respectively. When grid lines are parallel to x‐, y‐, and z‐coordinate axes, then ?u/?n at an internal grid point becomes ?u/?x, ?u/?y, and ?u/?z, respectively. The proposed methods are also applicable to the polar coordinates problems. The proposed methods have the simplicity in nature and use the same marching type of technique of solution. Stability analysis of a linear difference equation and computational efficiency of the methods are discussed. The results of numerical experiments are compared with exact solutions. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 327–342, 2003.  相似文献   

14.
We consider an inverse problem for identifying a leading coefficient α(x) in −(α(x)y′(x))′ + q(x)y(x) = H(x), which is known as an inverse coefficient problem for the Sturm-Liouville operator. We transform y(x) to u(xt) =  (1 + t)y(x) and derive a parabolic type PDE in a fictitious time domain of t. Then we develop a Lie-group adaptive method (LGAM) to find the coefficient function α(x). When α(x) is a continuous function of x, we can identify it very well, by giving boundary data of y, y′ and α. The efficiency of LGAM is confirmed by comparing the numerical results with exact solutions. Although the data used in the identification are limited, we can provide a rather accurate solution of α(x).  相似文献   

15.
In this paper we consider the Cauchy problem for the equation ∂u/∂t + uu/∂x + u/x = 0 for x > 0, t ⩾ 0, with u(x, 0) = u0(x) for x < x0, u(x, 0) = u0+(x) for x > x0, u0(x0) > u0+(x0). Following the ideas of Majda, 1984 and Lax, 1973, we construct, for smooth u0 and u0+, a global shock front weak solution u(x, t) = u(x, t) for x < ϕ(t), u(x, t) = u+(x, t) for x > ϕ(t), where u and u+ are the strong solutions corresponding (respectively) to u0 and u0+ and the curve t → ϕ(t) is defined by dϕ/dt (t) = 1/2[u(ϕ(t), t) + u+(ϕ(t), t)], t ⩾ 0 and ϕ(0) = x0. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

16.
This article presents a semigroup approach for the mathematical analysis of the inverse coefficient problems of identifying the unknown coefficient k(u(x,t)) in the quasi‐linear parabolic equation ut(x,t)=(k(u(x,t))ux(x,t))x, with Dirichlet boundary conditions u(0,t)=ψ0, u(1,t)=ψ1. The main purpose of this paper is to investigate the distinguishability of the input–output mappings Φ[?]:?? →C1[0,T], Ψ[?]:??→C1[0,T] via semigroup theory. In this paper, it is shown that if the null space of the semigroup T(t) consists of only zero function, then the input–output mappings Φ[?] and Ψ[?] have the distinguishability property. It is also shown that the types of the boundary conditions and the region on which the problem is defined play an important role in the distinguishability property of these mappings. Moreover, under the light of measured output data (boundary observations) f(t):=k(u(0,t))ux(0,t) or/and h(t):=k(u(1,t))ux(1,t), the values k0) and k1) of the unknown diffusion coefficient k(u(x,t)) at (x,t)=(0,0) and (x,t)=(1,0), respectively, can be determined explicitly. In addition to these, the values ku0) and ku1) of the unknown coefficient k(u(x,t)) at (x,t)=(0,0) and (x,t)=(1,0), respectively, are also determined via the input data. Furthermore, it is shown that measured output data f(t) and h(t) can be determined analytically by an integral representation. Hence the input–output mappings Φ[?]:??→ C1[0,T], Ψ[?]:??→C1[0,T] are given explicitly in terms of the semigroup. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper we consider a new integrable equation (the Degasperis-Procesi equation) derived recently by Degasperis and Procesi (1999) [3]. Analogous to the Camassa-Holm equation, this new equation admits blow-up phenomenon and infinite propagation speed. First, we give a proof for the blow-up criterion established by Zhou (2004) in [12]. Then, infinite propagation speed for the Degasperis-Procesi equation is proved in the following sense: the corresponding solution u(x,t) with compactly supported initial datum u0(x) does not have compact x-support any longer in its lifespan. Moreover, we show that for any fixed time t>0 in its lifespan, the corresponding solution u(x,t) behaves as: u(x,t)=L(t)ex for x?1, and u(x,t)=l(t)ex for x?−1, with a strictly increasing function L(t)>0 and a strictly decreasing function l(t)<0 respectively.  相似文献   

18.
In this paper, a Galerkin type algorithm is given for the numerical solution of L(x)=(r(t)x'(t))'-p(t)x(t)=g(t); x(a)=xa, x'(a)=x'a, where r (t)>f0, and Spline hat functions form the approximating basis. Using the related quadratic form, a two-step difference equation is derived for the numerical solutions. A discrete Gronwall type lemma is then used to show that the error at the node points satisfies ek=0(h2). If e(t) is the error function on a?t?b; it is also shown (in a variety of norms) that e(t)?Ch2 and e'(t)?C1h. Test case runs are also included. A (one step) Richardson or Rhomberg type procedure is used to show that eRk=0(h4). Thus our results are comparable to Runge-Kutta with half the function evaluations.  相似文献   

19.
By constructing different auxiliary functions and using Hopf’s maximum principle, the sufficient conditions for the blow-up and global solutions are presented for nonlinear parabolic equation ut = ∇(a(u)b(x)c(t)∇u) + f(xuqt) with different kinds of boundary conditions. The upper bounds of the “blow-up time” and the “upper estimates” of global solutions are provided. Finally, some examples are presented as the application of the obtained results.  相似文献   

20.
It is shown that the first order multivalued equation for V = V(t, x, y, z) involving the sum of two subdifferentials composed with the partials of V (Vt +f(t, x, y, z) · ▽xV + β(Vy) + γ(Vz) + h(t, x, y, z) ? 0 a.e.) has a Lipschitz solution. This solution is shown to be the value of a differential game in which the players are restricted to choosing monotone nondecreasing functions of time. Accordingly, the multivalued equation is interpreted as the corresponding Hamilton-Jacobi equation of the game.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号