首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
随着物理与技术的深入研究,分数阶非线性系统的动力性态及其分数阶混沌系统的同步成为研究的焦点.研究了分数阶Duffing系统的动力性态包括混沌性质,并且由分数阶非线性稳定性准则得到了分数阶非自治系统的混沌同步.特别地,研究了由单一主动控制的分数阶Duffing系统的同步.相应的数值结果演示了方法的有效性.  相似文献   

2.
A note on phase synchronization in coupled chaotic fractional order systems   总被引:1,自引:0,他引:1  
The dynamic behaviors of fractional order systems have received increasing attention in recent years. This paper addresses the reliable phase synchronization problem between two coupled chaotic fractional order systems. An active nonlinear feedback control scheme is constructed to achieve phase synchronization between two coupled chaotic fractional order systems. We investigated the necessary conditions for fractional order Lorenz, Lü and Rössler systems to exhibit chaotic attractor similar to their integer order counterpart. Then, based on the stability results of fractional order systems, sufficient conditions for phase synchronization of the fractional models of Lorenz, Lü and Rössler systems are derived. The synchronization scheme that is simple and global enables synchronization of fractional order chaotic systems to be achieved without the computation of the conditional Lyapunov exponents. Numerical simulations are performed to assess the performance of the presented analysis.  相似文献   

3.
In this work, we study chaos control and synchronization of the commensurate fractional order Liu system. Based on the stability theory of fractional order systems, the conditions of local stability of nonlinear three-dimensional commensurate fractional order systems are discussed. The existence and uniqueness of solutions for a class of commensurate fractional order Liu systems are investigated. We also obtain the necessary condition for the existence of chaotic attractors in the commensurate fractional order Liu system. The effect of fractional order on chaos control of this system is revealed by showing that the commensurate fractional order Liu system is controllable just in the fractional order case when using a specific choice of controllers. Moreover, we achieve chaos synchronization between the commensurate fractional order Liu system and its integer order counterpart via function projective synchronization. Numerical simulations are used to verify the analytical results.  相似文献   

4.
In this paper stabilizing unstable periodic orbits (UPO) in a chaotic fractional order system is studied. Firstly, a technique for finding unstable periodic orbits in chaotic fractional order systems is stated. Then by applying this technique to the fractional van der Pol and fractional Duffing systems as two demonstrative examples, their unstable periodic orbits are found. After that, a method is presented for stabilization of the discovered UPOs based on the theories of stability of linear integer order and fractional order systems. Finally, based on the proposed idea a linear feedback controller is applied to the systems and simulations are done for demonstration of controller performance.  相似文献   

5.
In this paper, multi‐switching combination–combination synchronization scheme has been investigated between a class of four non‐identical fractional‐order chaotic systems. The fractional‐order Lorenz and Chen's systems are taken as drive systems. The combination–combination of multi drive systems is then synchronized with the combination of fractional‐order Lü and Rössler chaotic systems. In multi‐switching combination–combination synchronization, the state variables of two drive systems synchronize with different state variables of two response systems simultaneously. Based on the stability of fractional‐order chaotic systems, the multi‐switching combination–combination synchronization of four fractional‐order non‐identical systems has been investigated. For the synchronization of four non‐identical fractional‐order chaotic systems, suitable controllers have been designed. Theoretical analysis and numerical results are presented to demonstrate the validity and feasibility of the applied method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
The stochastic response of a class of self-excited systems with Caputo-type fractional derivative driven by Gaussian white noise is considered. Firstly, the generalized harmonic function technique is applied to the fractional self-excited systems. Based on this approach, the original fractional self-excited systems are reduced to equivalent stochastic systems without fractional derivative. Then, the analytical solutions of the equivalent stochastic systems are obtained by using the stochastic averaging method. Finally, in order to verify the theoretical results, the two most typical self-excited systems with fractional derivative, namely the fractional van der Pol oscillator and fractional Rayleigh oscillator, are discussed in detail. Comparing the analytical and numerical results, a very satisfactory agreement can be found. Meanwhile, the effects of the fractional order, the fractional coefficient, and the intensity of Gaussian white noise on the self-excited fractional systems are also discussed in detail.  相似文献   

7.
In this article, a brief stability analysis of equilibrium points in nonlinear fractional order dynamical systems is given. Then, based on the first integral concept, a definition of planar Hamiltonian systems with fractional order introduced. Some interesting properties of these fractional Hamiltonian systems are also presented. Finally, we illustrate two examples to see the differences between fractional Hamiltonian systems with their classical order counterparts.© 2014 Wiley Periodicals, Inc. Complexity 21: 93–99, 2015  相似文献   

8.
This paper deals with time domain identification of fractional order systems. A new identification technique is developed providing recursive parameters estimation of fractional order models. The identification model is defined by a generalized ARX structure obtained by discretization of a continuous fractional order differential equation. The parameters are then estimated using the recursive least squares and the recursive instrumental variable algorithms extended to fractional order cases. Finally, the quality of the proposed technique is illustrated and compared through the identification of simulated fractional order systems.  相似文献   

9.
Base on the stability theory of fractional order system, this work mainly investigates modified projective synchronization of two fractional order hyperchaotic systems with unknown parameters. A controller is designed for synchronization of two different fractional order hyperchaotic systems. The method is successfully applied to modified projective synchronization between fractional order Rössler hyperchaotic system and fractional order Chen hyperchaotic system, and numerical simulations illustrate the effectiveness of the obtained results.  相似文献   

10.
Based on the stability theory of fractional order systems, this paper analyses the synchronization conditions of the fractional order chaotic systems with activation feedback method. And the synchronization of commensurate order hyperchaotic Lorenz system of the base order 0.98 is implemented based on this method. Numerical simulations show the effectiveness of this method in a class of fractional order chaotic systems.  相似文献   

11.
In this article, the active control method is used for synchronization of two different pairs of fractional order systems with Lotka–Volterra chaotic system as the master system and the other two fractional order chaotic systems, viz., Newton–Leipnik and Lorenz systems as slave systems separately. The fractional derivative is described in Caputo sense. Numerical simulation results which are carried out using Adams–Bashforth–Moulton method show that the method is easy to implement and reliable for synchronizing the two nonlinear fractional order chaotic systems while it also allows both the systems to remain in chaotic states. A salient feature of this analysis is the revelation that the time for synchronization increases when the system-pair approaches the integer order from fractional order for Lotka–Volterra and Newton–Leipnik systems while it reduces for the other concerned pair.  相似文献   

12.
Chaos in a modified van der Pol system and in its fractional order systems is studied in this paper. It is found that chaos exists both in the system and in the fractional order systems with order from 1.8 down to 0.8 much less than the number of states of the system, two. By phase portraits, Poincaré maps and bifurcation diagrams, the chaotic behaviors of fractional order modified van der Pol systems are presented.  相似文献   

13.
Synchronization of fractional order chaotic dynamical systems is receiving increasing attention owing to its interesting applications in secure communications of analog and digital signals and cryptographic systems. In this article we utilize active control technique to synchronize different fractional order chaotic dynamical systems. Further we investigate the interrelationship between the (fractional) order and synchronization in different chaotic dynamical systems. It is observed that synchronization is faster as the order tends to one.  相似文献   

14.
One new theorem for Caputo fractional derivative and two new theorems for Caputo fractional order systems, when 1 a 2, are proposed in this paper. The results have proved to be useful in order to apply the fractional-order extension of Lyapunov direct method, to demonstrate the instability and the stability of many fractional order systems,which can be nonlinear and time varying.  相似文献   

15.
张海  赵小文  蒋威 《数学杂志》2011,31(1):91-95
本文研究了系数矩阵不是方阵情形的分数阶一般退化微分系统的解.通过定义可解阵对,获得分数阶一般退化微分系统的通解表达式.该结果推广了整数阶退化微分系统和分数阶常微分系统解的相应结论.  相似文献   

16.
The paper is concerned with the problem of the robust stabilization for a class of fractional order linear systems with positive real uncertainty under Riemann–Liouville (RL) derivatives. Firstly, by utilizing the continuous frequency distributed model of the fractional integrator, the fractional order system is expressed as an infinite dimensional integral order system. And via using indirect Lyapunov approach and linear matrix inequality techniques, sufficient condition for robust asymptotic stability of the fractional order systems and design methods of the state feedback controller are presented. Secondly, by using matrixs singular value decomposition technique the static output feedback controller and observer-based controller for asymptotically stabilizing the fractional order systems are derived. Finally, the validity of the proposed methods are demonstrated by numerical examples.  相似文献   

17.
该文研究了 Vallis系统的Darboux多项式和不变代数曲面问题.在证明中,使用加权齐次多项式和特征曲线的方法,通过求解线性偏微分方程,得到了在适当的参数条件下,Vallis系统存在三类Darboux多项式.  相似文献   

18.
In this paper, a stability test procedure is proposed for linear nonhomogeneous fractional order systems with a pure time delay. Some basic results from the area of finite time and practical stability are extended to linear, continuous, fractional order time-delay systems given in state-space form. Sufficient conditions of this kind of stability are derived for particular class of fractional time-delay systems. A numerical example is given to illustrate the validity of the proposed procedure.  相似文献   

19.
This paper is devoted to investigate synchronization and antisynchronization of N‐coupled general fractional‐order complex chaotic systems described by a unified mathematical expression with ring connection. By means of the direct design method, the appropriate controllers are designed to transform the fractional‐order error dynamical system into a nonlinear system with antisymmetric structure. Thus, by using the recently established result for the Caputo fractional derivative of a quadratic function and a fractional‐order extension of the Lyapunov direct method, several stability criteria are derived to ensure the occurrence of synchronization and antisynchronization among N‐coupled fractional‐order complex chaotic systems. Moreover, numerical simulations are performed to illustrate the effectiveness of the proposed design.  相似文献   

20.
研究分数阶不确定多混沌系统的自适应滑模同步,通过构造滑模面,设计控制器和适应规则,能够满足滑模面的稳定性与到达性,进而得到分数阶不确定多混沌系统取得自适应滑模同步的充分性条件,研究表明:分数阶不确定多混沌系统满足在一定条件下能够取得自适应滑模同步.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号