首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies the exact boundary controllability of the semi-linear Schrödinger equation posed on a bounded domain ΩRn with either the Dirichlet boundary conditions or the Neumann boundary conditions. It is shown that if
  相似文献   

2.
In this paper, we consider one-dimensional nonlinear Schrödinger equation iutuxx+V(x)u+f(2|u|)u=0 on [0,πR under the boundary conditions a1u(t,0)−b1ux(t,0)=0, a2u(t,π)+b2ux(t,π)=0, , for i=1,2. It is proved that for a prescribed and analytic positive potential V(x), the above equation admits small-amplitude quasi-periodic solutions corresponding to d-dimensional invariant tori of the associated infinite-dimensional dynamical system.  相似文献   

3.
In this paper, a high-order and accurate method is proposed for solving the unsteady two-dimensional Schrödinger equation. We apply a compact finite difference approximation of fourth-order for discretizing spatial derivatives and a boundary value method of fourth-order for the time integration of the resulting linear system of ordinary differential equations. The proposed method has fourth-order accuracy in both space and time variables. Moreover this method is unconditionally stable due to the favorable stability property of boundary value methods. The results of numerical experiments are compared with analytical solutions and with those provided by other methods in the literature. These results show that the combination of a compact finite difference approximation of fourth-order and a fourth-order boundary value method gives an efficient algorithm for solving the two dimensional Schrödinger equation.  相似文献   

4.
In this paper we consider an optimal control problem controlled by three functions which are in the coefficients of a two-dimensional Schrödinger equation. After proving the existence and uniqueness of the optimal solution, we get the Frechet differentiability of the cost functional using Hamilton-Pontryagin function. Then we state a necessary condition to an optimal solution in the variational inequality form using the gradient.  相似文献   

5.
We prove global, scale invariant Strichartz estimates for the linear magnetic Schrödinger equation with small time dependent magnetic field. This is done by constructing an appropriate parametrix. As an application, we show a global regularity type result for Schrödinger maps in dimensions n?6.  相似文献   

6.
In this paper, one-dimensional (1D) nonlinear Schrödinger equation
  相似文献   

7.
8.
We obtain endpoint estimates for the Schrödinger operator feitΔf in with initial data f in the homogeneous Sobolev space . The exponents and regularity index satisfy and . For n=2 we prove the estimates in the range q>16/5, and for n?3 in the range q>2+4/(n+1).  相似文献   

9.
We study inhomogeneous Strichartz estimates for the Schrödinger equation for dimension n?3. Using a frequency localization, we obtain some improved range of Strichartz estimates for the solution of inhomogeneous Schrödinger equation except dimension n=3.  相似文献   

10.
In this paper, we develop symplectic and multi-symplectic wavelet collocation methods to solve the two-dimensional nonlinear Schrödinger equation in wave propagation problems and the two-dimensional time-dependent linear Schrödinger equation in quantum physics. The Hamiltonian and the multi-symplectic formulations of each equation are considered. For both formulations, wavelet collocation method based on the autocorrelation function of Daubechies scaling functions is applied for spatial discretization and symplectic method is used for time integration. The conservation of energy and total norm is investigated. Combined with splitting scheme, splitting symplectic and multi-symplectic wavelet collocation methods are also constructed. Numerical experiments show the effectiveness of the proposed methods.  相似文献   

11.
We study the equation
−△u(x,y)+ν(x,y)u(x,y)=0  相似文献   

12.
13.
Multi-point boundary value problems have received considerable interest in the mathematical applications in different areas of science and engineering. In this work, our goal is to obtain numerically the approximate solution of these problems by using the Sinc-collocation method. Some properties of the Sinc-collocation method required for our subsequent development are given and are utilized to reduce the computation of solution of multi-point boundary value problems to some algebraic equations. It is well known that the Sinc procedure converges to the solution at an exponential rate. Numerical examples are included to demonstrate the validity and applicability of the new technique.  相似文献   

14.
We establish local well-posedness for small initial data in the usual Sobolev spaces Hs(R), s?1, and global well-posedness in H1(R), for the Cauchy problem associated to the nonlocal nonlinear Schrödinger equation
  相似文献   

15.
16.
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to nonintegrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the nonlinear Schrödinger equation.  相似文献   

17.
We disprove Strichartz estimates for the solution of the inhomogeneous Schrödinger equation in a certain range of the Lebesgue exponents values.  相似文献   

18.
We show that the Schrödinger operator eitΔ is bounded from Wα,q(Rn) to Lq(Rn×[0,1]) for all α>2n(1/2−1/q)−2/q and q?2+4/(n+1). This is almost sharp with respect to the Sobolev index. We also show that the Schrödinger maximal operator sup0<t<1|eitΔf| is bounded from Hs(Rn) to when s>s0 if and only if it is bounded from Hs(Rn) to L2(Rn) when s>2s0. A corollary is that sup0<t<1|eitΔf| is bounded from Hs(R2) to L2(R2) when s>3/4.  相似文献   

19.
We consider the general quasilinear Schrödinger equation whose second order coefficients are given by a real symmetric non-degenerate matrix. We deduce conditions which guarantee that the associated initial value problem is locally well posed.  相似文献   

20.
A family of predictor-corrector exponential Numerov-type methods is developed for the numerical integration of the one-dimensional Schrödinger equation. The formula considered contains certain free parameters which allow it to be fitted automatically to exponential functions. The new methods are very simple and integrate more exponential functions than both the well-known fourth-order Numerov-type exponentially fitted methods and the sixth algebraic order Runge-Kutta-type methods. Numerical results also indicate that the new methods are much more accurate than the other exponentially fitted methods mentioned above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号