首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The objective of the present paper is to use the well-known Ross–Macdonald models as a prototype, incorporating spatial movements, identifying different time scales and proving a singular perturbation result using a system of local and nonlocal diffusion. This results can be applied to the prototype model, where the vector has a fast dynamics, local in space, and the host has a slow dynamics, nonlocal in space.  相似文献   

2.
We provide effective and practical guidelines on the choice of the complex denominator function of the discrete derivative as well as on the choice of the nonlocal approximation of nonlinear terms in the construction of nonstandard finite difference (NSFD) schemes. Firstly, we construct nonstandard one-stage and two-stage theta methods for a general dynamical system defined by a system of autonomous ordinary differential equations. We provide a sharp condition, which captures the dynamics of the continuous model. We discuss at length how this condition is pivotal in the construction of the complex denominator function. We show that the nonstandard theta methods are elementary stable in the sense that they have exactly the same fixed-points as the continuous model and they preserve their stability, irrespective of the value of the step size. For more complex dynamical systems that are dissipative, we identify a class of nonstandard theta methods that replicate this property. We apply the first part by considering a dynamical system that models the Ebola Virus Disease (EVD). The formulation of the model involves both the fast/direct and slow/indirect transmission routes. Using the specific structure of the EVD model, we show that, apart from the guidelines in the first part, the nonlocal approximation of nonlinear terms is guided by the productive-destructive structure of the model, whereas the choice of the denominator function is based on the conservation laws and the sub-equations that are associated with the model. We construct a NSFD scheme that is dynamically consistent with respect to the properties of the continuous model such as: positivity and boundedness of solutions; local and/or global asymptotic stability of disease-free and endemic equilibrium points; dependence of the severity of the infection on self-protection measures. Throughout the paper, we provide numerical simulations that support the theory.  相似文献   

3.
A general model of a heterogeneous control system is introduced in the form of a first order distributed system with nonlocal dynamics and exogenous side-conditions. The heterogeneity is represented by a parameter taking values in an abstract measurable space, so that both continuous and discrete heterogeneity, as well as probabilistic heterogeneity without density, are included. A distributed and a lumped controls are involved, the latter appearing also in the side conditions. An existence theorem is proved for the uncontrolled system, and the sensitivity of the solution with respect to the control variables is estimated. The main result is an optimality condition in the form of the Pontryagin local maximum principle. A global maximum principle holds for the distributed control under an additional condition that rules out discrete measurable heterogeneity spaces. A number of possible applications are outlined: age-structured systems, size-structured systems, (nonlocal) advection-reaction equations, static parametric heterogeneity in epidemiology, and two-stage control systems with uncertain switching time.  相似文献   

4.
The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen’s nonlocal elasticity equations are incorporated into the different types of plate theory namely as classical plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order shear deformation theory (HSDT). An exact solution is conducted to obtain the critical biaxial buckling loads of simply-supported square and rectangular SLGSs with various values of side-length and nonlocal parameter corresponding to each type of nonlocal plate model. Then, molecular dynamics (MD) simulations are performed for a series of armchair and zigzag SLGSs with different side-lengths, the results of which are matched with those obtained by the nonlocal plate models to extract the appropriate values of nonlocal parameter relevant to each type of nonlocal elastic plate model and chirality. It is found that the present nonlocal plate models with their proposed proper values of nonlocal parameter have an excellent capability to predict the biaxial buckling response of SLGSs.  相似文献   

5.
We consider a class of age-structured control problems with nonlocal dynamics and boundary conditions. For these problems we suggest Arrow-type sufficient conditions for optimality of problems defined on finite as well as infinite time intervals. We examine some models as illustrations (optimal education and optimal offence control problems).  相似文献   

6.
Theoretical and Mathematical Physics - We consider the nonlocal dynamics of a model describing two weakly coupled oscillators with nonlinear compactly supported delayed feedback. Such models are...  相似文献   

7.
The free vibration response of single-walled carbon nanotubes (SWCNTs) is investigated in this work using various nonlocal beam theories. To this end, the nonlocal elasticity equations of Eringen are incorporated into the various classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Reddy beam theory (RBT) to consider the size-effects on the vibration analysis of SWCNTs. The generalized differential quadrature (GDQ) method is employed to discretize the governing differential equations of each nonlocal beam theory corresponding to four commonly used boundary conditions. Then molecular dynamics (MD) simulation is implemented to obtain fundamental frequencies of nanotubes with different chiralities and values of aspect ratio to compare them with the results obtained by the nonlocal beam models. Through the fitting of the two series of numerical results, appropriate values of nonlocal parameter are derived relevant to each type of chirality, nonlocal beam model, and boundary conditions. It is found that in contrast to the chirality, the type of nonlocal beam model and boundary conditions make difference between the calibrated values of nonlocal parameter corresponding to each one.  相似文献   

8.
We consider classical aspects of the dynamics of scalar fields with nonpositive-definite potentials in the Friedmann cosmology. Such models appear as effective local models in the framework of nonlocal models related to string field theory. In an effective local approximation after a suitable field redefinition, the Higgs potential with a negative effective cosmological constant appears in these models. A special feature of considered models is an absence of the reheating phase, instead of which phase of regime change from expansion to contraction appears. We study the behavior of the model near the point of regime change.  相似文献   

9.
We formulate and discuss the shallow water limit dynamics of the layered flow with three layers of immiscible fluids of different densities bounded above and below by horizontal walls. We obtain a resulting system of four equations, which may be nonlocal in the non‐Boussinesq case. We provide a systematic way to pass to the Boussinesq limit, and then study those equations, which are first‐order PDEs of mixed type, more carefully. We show that in a symmetric case the solutions remain on an invariant surface and using simple waves we illustrate that this is not the case for nonsymmetric cases. Reduced models consisting of systems of two equations are also proposed and compared to the full system.  相似文献   

10.
It is found that two different celebrate models, the Korteweg de‐Vrise (KdV) equation and the Boussinesq equation, are linked to a same model equation but with different nonlocalities. The nonlocal KdV equation can be derived in two ways, via the so‐called consistent correlated bang companied by the parity and time reversal from the local KdV equation and via the parity and time reversal symmetry reduction from a coupled local KdV system which is a two‐layer fluid model. The same model can be called as the nonlocal Boussinesq system if the nonlocality is changed as only one of parity and time reversal. The nonlocal Boussinesq equation can be derived via the parity or time reversal symmetry reduction from the local Boussinesq equation. For the nonlocal Boussinesq equation, with help of the bilinear approach and recasting the multisoliton solutions of the usual Boussinesq equation to an equivalent novel form, the multisoliton solutions with even numbers and the head on interactions are obtained. However, the multisoliton solutions with odd numbers and the multisoliton solutions with even numbers but with pursuant interactions are prohibited. For the nonlocal KdV equation, the multisoliton solutions exhibit many more structures because an arbitrary odd function of can be introduced as background waves of the usual KdV equation.  相似文献   

11.
We study the controllability properties of a nonlinear parabolic system that models the temperature evolution of a one-dimensional thermoelastic rod that may come into contact with a rigid obstacle. Basically the system dynamics is described by a one-dimensional nonlocal heat equation with a nonlinear and nonlocal boundary condition of Newmann type. We focus on the control problem and treat the case when the control is distributed over the whole space domain. In this case the system is proved to be exactly null controllable provided the parameters of the system are smooth. The proof is based on changing the control variable and using Aubins Compactness Lemma to obtain an invariant set for the linearized controllability map. Then, by proving that the found solution is sufficiently smooth, we get the null controllability for the original system.  相似文献   

12.
In this paper, the leader-following distributed consensus control problem is addressed for general linear multi-agent systems with heterogeneous uncertain agent dynamics and switched leader dynamics. Different from most existing results with a single linear time-invariant (LTI) leader dynamics, the leader dynamics under consideration is composed by a family of LTI models and a switching logic governing the switches among them, which is capable of generating more diverse and sophisticated reference signals to accommodate more complicated consensus control design tasks. A novel distributed adaptive switching consensus protocol is developed by incorporating the model reference adaptive control mechanism and arbitrary switching control technique, which can be synthesized by following a two-layer hierarchical design scheme. A numerical example has been used to demonstrate the effectiveness of the proposed approach.  相似文献   

13.
We study the McKendrick type models of population dynamics with instantaneous time delay in the birth rate. The models involve first order partial differential equations with nonlocal and delayed boundary conditions. We show that a semigroup can be associated

to it and identify the infinistimal generator. Its spectral properties are analyzed yielding large time behaviour. An interesting result is that if the total population converges to an equilibrium it will converge to it in an oscillatory fashion. Further, we consider a logistic ara age-dependent model with delay. A nonlinear semigroup is constructed to describe the evolution of the population. Existence and uniqueness of the nonlinear equation are proved.  相似文献   

14.
For a pair of reaction diffusion equations with one diffusion coefficient very large, there is associated a reaction diffusion equation coupled with an ordinary differential equation (the shadow system) with nonlocal effects which has the property that it contains all of the essential dynamics of the original equations. Key words: Attractors, shadow systems, reaction-diffusion equations  相似文献   

15.
We present a short survey on the biological modeling, dynamics analysis, and numerical simulation of nonlocal spatial effects, induced by time delays, in diffusion models for a single species confined to either a finite or an infinite domain. The nonlocality, a weighted average in space, arises when account is taken of the fact that individuals have been at different points in space at previous times. We discuss and compare two existing approaches to correctly derive the spatial averaging kernels, and we summarize some of the recent developments in both qualitative and numerical analysis of the nonlinear dynamics, including the existence, uniqueness (up to a translation), and stability of traveling wave fronts and periodic spatio-temporal patterns of the model equations in unbounded domains and the linear stability, boundedness, global convergence of solutions and bifurcations of the model equations in finite domains.  相似文献   

16.
To overcome the long wavelength and time limits of classical elastic theory, this paper presents a fractional nonlocal time-space viscoelasticity theory to incorporate the non-locality of both time and spatial location. The stress (strain) at a reference point and a specified time is assumed to depend on the past time history and the stress (strain) of all the points in the reference domain through nonlocal kernel operators. Based on an assumption of weak non-locality, the fractional Taylor expansion series is used to derive a fractional nonlocal time-space model. A fractional nonlocal Kevin–Voigt model is considered as the simplest fractional nonlocal time-space model and chosen to be applied for structural dynamics. The correlation between the intrinsic length and time parameters is discussed. The effective viscoelastic modulus is derived and, based on which, the tension and vibration of rods and the bending, buckling and vibration of beams are studied. Furthermore, in the context of Hamilton’s principle, the governing equation and the boundary condition are derived for longitudinal dynamics of the rod in a more rigorous manner. It is found that when the external excitation frequency and the wavenumber interact with the intrinsic microstructures of materials and the intrinsic time parameter, the nonlocal space-time effect will become substantial, and therefore the viscoelastic structures are sensitive to both microstructures and time.  相似文献   

17.
A class of nonlinear reaction-diffusion systems is considered. We formulate some automatic control problems based on feedback devices located on the boundary. Two different types of devices are analyzed: relay switch and Preisach hysteresis operator. The resulting models lead to a nonlinear integrodifferential parabolic system with nonlinear and nonlocal boundary conditions. We prove global existence and uniqueness of solutions in both the cases considered.  相似文献   

18.
In this paper we consider Hybrid Petri Nets (HPNs), a particular formalism that combines fluid and discrete event dynamics. We first provide a survey of the main HPN models that have been presented in the literature in the last decades. Then, we focus on a particular HPN model, namely the First-Order Hybrid Petri Net (FOHPN) model, whose continuous dynamics are piece-wise constant. Here the problem of designing an optimal controller simply requires solving on-line an appropriate linear integer programming problem. In this paper we show how FOHPNs can efficiently represent the concurrent activities of Distributed Manufacturing Systems (DMS), and some interesting optimization problems are also solved via numerical simulation.  相似文献   

19.
We derive and study asymptotic models for the dynamics of a thin jet of fluid that is separated from an outer immiscible fluid by fluid interfaces with surface tension. Both fluids are assumed to be incompressible, inviscid, irrotational, and density-matched. One such thin jet model is a coupled system of PDEs with nonlocal terms—Hilbert transforms—that result from expansion of a Biot-Savart integral. In order to make the asymptotic model well-posed, the Hilbert transforms act upon time derivatives of the jet thickness, making the system implicit. Within this thin jet model, we demonstrate numerically the formation of finite-time pinching singularities, where the width of the jet collapses to zero at a point. These singularities are driven by the surface tension and are very similar to those observed previously by Hou, Lowengrub, and Shelley in large-scale simulations of the Kelvin-Helmholtz instability with surface tension and in other related studies. Dropping the nonlocal terms, we also study a much simpler local model. For this local model we can preclude analytically the formation of certain types of singularities, though not those of pinching type. Surprisingly, we find that this local model forms pinching singularities of a very similar type to those of the nonlocal thin jet model. © 1998 John Wiley & Sons, Inc.  相似文献   

20.
This paper is concerned with a nonlocal evolution equation which is used to model the spatial dispersal of organisms. We study the existence, uniqueness and stability of the positive steady solution for this nonlocal evolution equation under general conditions. The global dynamics are also investigated and a trichotomy of the global asymptotics is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号