首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了发现高活性杀菌剂先导化合物,利用骨架跃迁原理,以哌啶基苯甲醛缩氨基硫脲为先导化合物,设计并合成了一系列未见文献报道的肉桂醛缩氨基硫脲类衍生物.化合物结构经过~1H NMR、~(13)C NMR、IR、元素分析或HRMS确证.离体抑菌活性测试结果表明,一些化合物对多种病原真菌表现出优异的杀菌活性.在50μg/mL浓度下,N'-[(1E,2E)-3-(4-氯苯基)烯丙基]哌啶-1-硫代酰肼(3a)和N'-((1E,2E)-3-苯基烯丙基)哌啶-1-硫代酰肼(3p)对苹果腐烂病菌、油菜菌核病菌菌、瓜果腐霉病菌和水稻纹枯病菌的离体抑菌活性均在95%以上.EC_(50)测试结果表明,化合物3a,3p对这4种病原真菌EC_(50)均在10μg/mL以内,表现出广谱的杀菌活性.初步构效关系分析表明,将苯甲醛骨架替换为具有杀菌活性的肉桂醛骨架结构,有利于活性的提高.  相似文献   

2.
L-香芹酮是一种具有杀菌活性的天然产物,可用作新型杀菌剂的先导化合物.因此,以L-香芹酮为先导化合物,采用活性亚结构拼接法合成了一系列含肟酯的L-香芹酮衍生物.化合物的结构经过红外, ~1HNMR, ~(13)CNMR和高分辨质谱确认.本研究还测定了这些化合物对油菜菌核真菌、小麦赤霉真菌、水稻稻瘟真菌、西瓜枯萎真菌和水稻纹枯真菌5种植物病原真菌的抑菌活性,结果表明大部分化合物显示了良好的抑菌活性.其中(E)-2-甲基-5-(丙-1-烯-2-基)环己-2-烯-1-酮O-(4-乙基苯甲酰基)肟(4e)对小麦赤霉的杀菌活性最好(EC_(50)=5.07mg/L),(S,E)-2-甲基-5-(丙-1-烯-2-基)环己-2-烯-1-酮O-(3-甲基苯甲酰基)肟(4b)对油菜菌核的杀菌活性最好(EC_(50)=18.84mg/L),均优于对照药剂烯肟菌酯.因此, L-香芹酮衍生物具有深入研究开发新型杀菌剂的潜力.  相似文献   

3.
本论文采用亚活性结构拼接的方法,以7-N,N-二乙氨基-4-甲基香豆素为原料,经二氧化硒氧化,然后与取代肼和取代酰肼反应,合成了13个7-N,N-二乙氨基香豆素腙及酰腙衍生物。所有目标化合物经1H NMR和MS进行结构确证。体外抑制乙酰胆碱酯酶活性结果表明,目标化合物4a和4c对乙酰胆碱酯酶具有较强的抑制活性,其IC50值分别为42. 89和90. 32μmol/L。初步构效关系研究表明,酰腙衍生物对乙酰胆碱酯酶的抑制活性比腙类衍生物好。  相似文献   

4.
以吡啶二芳酮为分子插件,以嘧菌腙为母体化合物设计并合成了一系列新型芳基吡啶酮腙类化合物.产物结构经~1HNMR、~(13)CNMR及HRMS确认,并采用生长速率法对所有化合物进行了离体抑菌活性测试.结果表明:在浓度为70μmol/L时,大部分化合物对所选8种病菌具有一定的抑制活性,其中2'-甲基乙酰基苯-4,6-二甲氧基嘧啶-2-腙(Ⅲ-3)和2-(2'-((4'-溴-苯基)(3'-氯-吡啶-4'-基)-亚甲基)-肼基)-4,6-二甲氧基嘧啶(Ⅲ-18)对病原菌抑制效果明显高于对照药嘧菌腙.Ⅲ-3对番茄灰霉病菌EC50为22.18μmol/L(嘧菌腙为31.38μmol/L), Ⅲ-18对水稻纹枯病菌EC50小于0.35μmol/L,比对照药嘧菌腙提高了260倍以上.  相似文献   

5.
为寻找新型蛋白酪氨酸磷酸酶1B (PTP1B)抑制剂,设计并合成了一系列新型含咔唑环芳氨基乙酰腙衍生物.其结构和构型用IR、~1H NMR、~(13)C NMR和2D NMR(包括~1H-~1H COSY、~1H-~(13)C HMBC和NOESY)谱及元素分析进行了确证.通过对PTP1B抑制活性的测试发现,目标化合物对PTP1B有较强的抑制作用,且大多数化合物的IC_(50)值低于阳性对照药物齐墩果酸,其中N'-(9-辛基咔唑-3-亚甲基)-2-(4-硝基苯氨基)乙酰肼(3t)活性最高,IC_(50)=(2.78±0.04)μmol/L.利用分子对接研究了化合物3t与PTP1B酶的结合情况.  相似文献   

6.
基于长期进行的抗HIV-1抑制剂研究,通过优化路线并设计合成了26个N-苯磺酰基-3-乙酰基吲哚羰基酰腙类衍生物(3a~3z)。该方法环保,为今后制备腙类化合物提供了绿色合成途径。所有目标化合物在体外均测定了其对HIV-1抑制活性。结果表明,化合物3a、3g、3t和3w~3y表现出较好的抗HIV-1活性,特别是N-苯磺酰基-3-乙酰基吲哚-3-甲基苯甲酰腙(3a)和N-(3-硝基)-苯磺酰基-3-乙酰基-6-甲基吲哚-2-噻吩甲酰腙(3t)表现出显著的抗HIV-1活性,其对应EC_(50)值分别为0.77和0.74μg/mL,TI值分别为259.74和270.27。因此,化合物3a和3t可作为候选化合物经进一步结构优化研究其HIV-1活性。  相似文献   

7.
琥珀酸脱氢酶抑制剂(SDHI)是一类低毒、高效的杀菌剂,为开发结构新颖、广谱的SDHI杀菌剂,将噻吩环引入吡唑酰胺类杀菌剂的骨架中,设计并合成了24个吡唑联噻吩甲酰胺类衍生物.结构经过~1H NMR、~(13)C NMR和HRMS鉴定,其中N-(4-甲氧基苯基)-4-(1-甲基-1H-吡唑-4-基)噻吩-2-甲酰胺(7i)经过X射线衍射确定其空间结构.通过对6种植物病原真菌离体抑制活性测试,发现在50μg/mL的浓度下,部分化合物对水稻纹枯病菌、小麦赤霉病菌和草莓灰霉病菌有较高的抑制活性.其中化合物N-(4-氟苯乙基)-4-(1-甲基-1H-吡唑-4-基)噻吩-2-甲酰胺(7c)对水稻纹枯病菌的EC_(50)为11.6μmol/L,化合物N-(2-氟苯基)-4-(1-甲基-1H-吡唑-4-基)噻吩-2-甲酰胺(7j)对小麦赤霉病菌的EC_(50)为28.9μmol/L,化合物N-(4-氯苯基)-4-(1-甲基-1H-吡唑-4-基)噻吩-2-甲酰胺(7h)对草莓灰霉病菌的EC_(50)为21.3μmol/L.分子对接结果表明,活性较高的目标化合物与琥珀酸脱氢酶关键氨基酸残基形成较强的相互作用.  相似文献   

8.
设计合成了一系列新型3-乙酰基-4-肼基-5,5-二取代特窗酸和(E/Z)-3-(1-肼基亚乙基)-5,5-二取代2,4-呋喃二酮衍生物,意外得到4个5-甲基吡唑-4-羧酸甲酯,它们的结构经过HR-ESI-MS, 1H NMR, 13C NMR和X射线衍射的表征.这些肼基与氨基衍生物的生物活性测试结果表明,部分化合物显示出对测试植物病原菌中等至优异的杀菌活性.如在400μg/m L浓度时化合物5G,5H,5I和5i对炭疽病菌有100%的活体抑制活性,化合物5G对霜霉病菌、白粉病菌和锈病病菌的活体抑制活性均为100%.在600μg/m L浓度时化合物5b, 5E和6F对小菜蛾,化合物6A, 6g和6H对桃蚜以及化合物6b对朱砂叶螨的死亡率均为100%. 5,5-螺环己基可以显著提高特窗酸衍生物的杀菌活性,取代肼基的引入可以获得更高的杀虫杀螨活性.化合物5G和5i是最有潜力作为研发新型杀菌剂进行结构修饰的先导化合物.  相似文献   

9.
基于查尔酮缩氨基胍衍生物的结构修饰,设计合成了一系列含联苯片段的缩氨基胍衍生物.目标化合物的结构通过1HNMR、13CNMR和HRMS进行了确证,并评价了其抗菌活性.结果显示目标化合物对所选菌种显示出了较好的抑制活性,最低抑菌浓度值(MIC)大都在0.5~8μg/mL.其中, 2-((4'-溴[1,1'-二苯]-4-基)亚甲基)肼-1-甲脒(3j)的抗菌活性最好,对所选菌株包括耐药菌均显示出强的抑菌活性,其中对金葡菌CMCC(B) 26003、粪肠球菌CMCC 29212和多药耐药金葡菌ATCC 33591尤为敏感,最低抑菌浓度值达到0.5μg/mL.此外,化合物3j表现低的细胞毒性,对正常人体细胞HEK293T的IC50值为60.90μmol/L.该结果表明化合物3j具有较好的选择性,在抗菌药物研究领域具有研究价值.  相似文献   

10.
王珍珍  王晓斌 《化学通报》2021,84(9):947-951
将酰腙结构引入到阿魏酸衍生物中,合成了6个阿魏酸酰腙类化合物,其结构经过了IR、~1H NMR、~(13)C NMR和ESI-HRMS表征。抗病毒活性测试结果表明,在质量浓度为500mg/L时,化合物3、5和6对烟草花叶病毒(TMV)在保护、治疗和钝化活性方面的抑制率均优于对照药剂病毒唑。进一步的EC_(50)测试结果表明,化合物3、5和6钝化活性的EC_(50)值分别为91.25、54.86、58.22mg/L,明显低于病毒唑的EC_(50)值(126.05mg/L)。该研究结果表明,阿魏酸酰腙类化合物对TMV具有较好的抗病毒活性,对其进行适当的结构改进和优化,有望得到具有更高抗病毒活性的化合物。  相似文献   

11.
通过活性拼接原理在喹唑啉酮3-位引入腙结构,使用简单的合成路线合成了一系列3-腙喹唑啉酮衍生物.目标化合物结构经核磁共振波谱(1H NMR,13C NMR)和高分辨质谱(HRMS)进行了表征确证.抗肿瘤活性测试结果表明,该类化合物对A549、PC-3、Hep G2、K562等肿瘤细胞系均表现出有效的抑制活性;其中(E)-N-((2-氯-1-甲基-1H-吲哚-3-基)亚甲基)-2-(7-氟-4-氧喹唑啉-3(4H)-基)乙酰肼(H1)对Hep G2细胞的IC50值为(9.90±1.13)μmol/L,(E)-2-(7-氟-4-氧喹唑啉-3(4H)-基)-N-((2-吗啉代-1-丙基-1H-吲哚-3-基)亚甲基)乙酰肼(H2)对PC-3细胞的IC50值为(10.70±0.78)μmol/L,抑制活性均优于阳性对照药吉非替尼[IC50=(23.33±4.14)μmol/L,IC50=(12.02±5.39)μmol/L].细胞凋亡、4’,6-联脒-2-苯基吲哚(...  相似文献   

12.
以DOT1L (Disruptor of telomeric silencing 1-like)抑制剂(8)为母体结构,对其核心骨架三氮唑并噻二唑两端的取代基进行结构修饰,设计合成了两个系列的三氮唑并噻二唑类结构衍生物,并测试了化合物在浓度为50μmol/L时的DOT1L酶抑制活性.结果表明,所测化合物均表现出一定的酶抑制活性,其中N,N-二甲基-4-(6-甲基-[1,2,4]三唑并[3,4-b][1,3,4]噻二唑-3-基)苯胺(14b)和(R)-{1-{{3-[4-(二甲基氨基)苯基]-[1,2,4]三唑并[3,4-b][1,3,4]噻二唑-6-基叔丁基}甲基}哌啶-3-基}氨基甲酸叔丁酯(16a)具有显著的DOT1L抑制活性,IC_(50)值分别为7.37和7.84μmol/L,与阳性对照化合物8的酶抑制活性相当.构效分析表明,当苯基连三氮唑并噻二唑部分占据S-腺苷-L-甲硫氨酸(SAM)结合位点时, R~1为4-N,N-二甲基、分子尾部R~2基团为疏水基团,适宜于分子与酶的结合,且其体积对活性影响较小.  相似文献   

13.
合成了一系列新型的基于咔唑的单-/双-硫代碳酰腙衍生物.利用IR、1H NMR、13C NMR和元素分析对其进行了结构表征.评价了目标化合物对Cdc25B和PTP1B的抑制活性,讨论了其结构与活性的关系.实验结果显示,大部分目标化合物对Cdc25B和PTP1B表现出良好的抑制活性.其中,1,5-双[(9-戊基-3-咔唑基)亚甲基]硫代碳酰腙(4d)对Cdc25B的抑制活性最高,IC50为(0.23±0.02)μg/m L.1,5-双[(9-乙基-3-咔唑基)亚甲基]硫代碳酰腙(4a)对PTP1B的抑制活性最高, IC50为(1.00±0.16)μg/m L.对目标化合物4a和4d进行分子对接研究和密度泛函理论(DFT)计算,结果表明,目标化合物4d和4a分别进入到了Cdc25B和PTP1B酶的活性位点区域,有活性作用的主要是硫代碳酰腙和咔唑基团.  相似文献   

14.
22个新的杂环酮腙及其类似物被合成,其对结核分枝杆菌菌株H37Rv的抑菌活性被测定.这些化合物都显示出抑菌活性.其中,化合物(1E,4E)-1,5-二(5'-溴-2'-噻吩基)-1,4-戊二烯-3-酮-(1',4',5',6'-四氢嘧啶基)腙(1d)的MIC90为2μg/m L,显示出最高的抑菌活性;同时该化合物对单耐异烟肼菌株242、耐多药菌株2312和广泛耐药菌株1220的MIC90值分别为0.25,1.0和0.5μg/m L,也表现出很好的抑菌作用.  相似文献   

15.
以西达本胺为基础设计合成了一系列新型组蛋白去乙酰化酶(HDACs)抑制剂,以提高与Zn2+的螯合作用和亚型选择性.大部分化合物表现出一定的抗肿瘤增殖活性.其中,(E)-N-(4-氨基-6-氟-[1,1'联苯]3-基)-4-((3-(吡啶-3-基)丙烯酰氨基)甲基)苯甲酰胺(7i)和(E)-N-(2-氨基-4-氟-5-(噻吩-2-基)苯基)-4-((3-(吡啶-3-基)丙烯酰胺基)甲基)苯甲酰胺(7j)抗肿瘤增殖活性最佳,对Jurkat细胞的IC50分别为3.29和12.59μmol/L,并且这两个化合物表现出一定的HDAC抑制活性,为更有潜力的西达本胺衍生物的设计合成提供了新思路.  相似文献   

16.
合成了一系列含有1,3,4-噁二唑的杨梅素衍生物,所有化合物经~1H NMR,~(13)C NMR以及HRMS表征.生物活性测试表明,部分化合物对柑橘溃疡病菌(Xac)、水稻白叶枯病菌(Xoo)以及烟草花叶病病毒(TMV)具有较好的抑制作用.其中化合物4a、4b、4f、4j对柑橘溃疡病菌的EC_(50)分别为18.5、40.7、26.9和32.4μg/m L,优于对照药叶枯唑(68.8μg/m L);化合物4f、4j对水稻白叶枯的EC_(50)分别为45.9和35.7μg/m L,优于对照药叶枯唑(69.3μg/m L);对TMV治疗活性,化合物4n的EC_(50)值为272.8μg/m L,优于对照药宁南霉素(428.8μg/m L);对TMV保护活性,化合物4f的EC_(50)值为235.6μg/m L,优于对照药宁南霉素(447.9μg/m L).化合物4j与南方水稻黑条矮缩病毒P9-1作用的微量热涌动实验表明,该化合物与P9-1之间具有较强的相互作用.  相似文献   

17.
以天然β-蒎烯衍生物诺蒎酮为原料,经缩合和环化等反应,合成了24个诺蒎酮基噻唑腙类化合物,采用1H NMR, 13CNMR,HRMS等方法对其结构进行表征,研究了噻唑腙类化合物对α-淀粉酶的抑制活性.结果表明,与阳性对照阿卡波糖相比,有6种化合物对α-淀粉酶表现出优良的的抑制活性,其中4-(2-(2-(6,6-二甲基-3-(4-甲基苄亚基)双环[3.1.1]庚烷-2-亚基)肼基)噻唑-4-基)苯酚(SZ14)的IC50值可达到4.11μmol/L.从化合物的结构与活性关系看,R2的结构对活性具有显著的影响.抑制动力学结果表明,这6种化合物是针对α-淀粉酶的非竞争性抑制剂.采用分子对接方法评价了噻唑腙类化合物与α-淀粉酶的结合亲和力,并分析探索了化合物SZ14与α-淀粉酶的结合方式.  相似文献   

18.
以课题组前期设计合成的非经典叶酸拮抗剂6-(4'-甲基苯乙基)-N5-氯乙酰基-2,4-二氨基哌啶并[3,2-d]嘧啶(wm-8.2)为先导化合物,将wm-8.2中的哌啶并嘧啶双环结构简化为嘧啶单环结构,以提高分子柔韧性并简化分子结构,根据6-位空间占位设计6-H和6-甲基两个系列,考察了不同桥链长度和不同芳香杂环侧链对抗肿瘤活性的影响.同时对具有叶酸抑制剂分子结构特征的关键中间体进行活性对比测定,研究了N(5)位氯乙酰基对活性的影响.两个系列目标化合物和关键中间体共36个化合物的结构均经1H NMR,13C NMR和MS确证.生物活性测定表明,6位为甲基的化合物中,具有三碳桥链及对甲基苯环侧链的6-甲基-2,4-二氨基-5-(N-(4-甲基苯基)丙基-N-(2-氯乙酰基))氨基嘧啶(6b-3)具有最好的HL-60、A549和HCT116细胞增殖抑制活性,IC50分别为0.25,0.83和0.63μmol?L-1.化合物6b-3在N(5)位氯乙酰基取代之前的关键中间体6-甲基-2,4-二氨基-5-(N-(4-甲基苯基)丙基)氨基嘧啶(5b-3)具有最优的二氢叶酸还原酶抑制活性.总结了化合物的构效关系,并用计算机模拟进行了阐释.  相似文献   

19.
蛋白酪氨酸磷酸酶1B(PTP1B)作为胰岛素和瘦素信号转导通路的负调节因子,已成为治疗糖尿病和肥胖症的潜在靶标.为了寻找非磷酸酯类PTP1B抑制剂,设计、合成了一系列(E)-1-取代苯基-3-[4-((E)-(2-(4-苯基噻唑-2-基)腙)甲基)苯基]-2-丙烯-1-酮(4a~4n),并对化合物进行了PTP1B抑制活性测定.结果显示,所有化合物对PTP1B均显示出较强的抑制活性,其中化合物4h活性最佳,IC50为(2.57±0.50)μmol L-1.  相似文献   

20.
为寻找高效、低毒的新型蛋白酪氨酸磷酸酶1B(PTP1B)抑制剂,设计并合成出了一系列新型含咔唑环和芳环/芳稠杂环的N-酰腙衍生物6~8和11.利用IR、1H NMR、13C NMR和2D NMR(包括1H-1H COSY和NOESY)谱及元素分析确定了其结构和构型.评价了目标化合物对PTP1B的抑制活性.实验结果表明,目标化合物对PTP1B均有较强的抑制活性,除了化合物N'-[9-(2-氯噻唑-5-甲基)咔唑-3-亚甲基]-2-苯氨基乙酰肼(6a)、N'-[9-(2-氯噻唑-5-甲基)咔唑-3-亚甲基]-2-(4-甲基苯氨基)乙酰肼(6b)、N'-[9-(2-氯噻唑-5-甲基)咔唑-3-亚甲基]-2-(3-硝基苯氨基)乙酰肼(6g)和N'-[9-(2-氯噻唑-5-甲基)咔唑-3-亚甲基]-2-(4-硝基苯氨基)乙酰肼(6h)外,其它化合物的活性均高于阳性对照药物齐墩果酸,其中N,N'-[(9-丁基咔唑基)-3,6-二亚甲基]-2,2'-[二(4-硝基苯氨基)]双乙酰肼(11b)的活性最高,IC50=(0.89±0.06)μmol/L.利用分子对接分别研究了代表目标化合物N'-[9-(2-氯噻唑-5-甲基)咔唑-3-亚甲基]-2-(4-溴苯氨基)乙酰肼(6d)、N'-[9-(2-氯噻唑-5-甲基)咔唑-3-亚甲基]-2-((2-(1-萘氧基)甲基)苯并咪唑-1-基)乙酰肼(7f)和11b与PTP1B酶的结合模式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号