首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过引入烷基二噻吩苯并噻二唑窄带隙基元到D-π-A有机染料体系中,设计并合成了两种二维结构的有机染料DD2和DH2,系统地研究了以烷基二噻吩苯并噻二唑基元作为侧基或桥联基元对染料敏化剂的光物理性能、电化学性能和光伏性能的影响.含有烷基二噻吩苯并噻二唑基元的这两种染料都具有较宽的吸收光谱.在氙灯光源(100mW?cm-2,AM 1.5 G)下,基于有机染料DH2和DD2的染料敏化太阳能电池的能量转换效率分别为1.67%和3.26%.采用鹅去氧胆酸(CDCA)共吸附剂优化后,染料DH2表现出较好的抗聚集能力,能量转换效率几乎没有变化;而DD2的能量转换效率提高到了5.53%.  相似文献   

2.
功能性有机染料在染料敏化太阳能电池领域具有重要的应用前景,电子给体、π共轭桥和电子受体(D-π-A)结构的染料是其中重要的组成类型.本文主要依据三苯胺和吲哚啉等取代苯胺为电子给体染料的结构设计,并结合本课题组的相关工作,综述了2008年以来此类D-π-A光敏染料的光电转换性能的研究进展.  相似文献   

3.
李晶  武文俊  贺锦香  花建丽 《化学学报》2010,68(24):2551-2558
两个新型的基于三苯胺苯并噻二唑的菁染料(III)通过含有该单元的苯并[e]吲哚啉乙醛和1,1,2-三甲基-3-丁 基-5-羧基-3H-吲哚碘盐的Knoevenagel缩合反应合成, 其结构用核磁和高分辨质谱进行了表征|对两个菁染料敏化剂的光物理、电化学性能和太阳能电池的光伏性能进行了系统研究. 在AM1.5G标准光源下, 两个染料的最高入射单色光子-电子转化效率值(IPCE值)均超过57%, 其光电转换效率分别为2.59%和3.28%.  相似文献   

4.
以N-苯基咔唑为电子给体,苯并噻二唑为辅助电子受体,噻吩或苯为π桥,氰乙酸或罗丹宁乙酸为键合受体,设计合成了四个N-苯基咔唑类染料敏化剂.对所合成的染料敏化剂的光谱性能和光电转换性能进行了研究.以氰乙酸为受体的染料敏化剂尽管最大吸收波长和摩尔吸光系数较以罗丹宁乙酸为受体的染料敏化剂低,但由于其电子注入效率高,导致其光电流和光电压均较优.以苯环为桥键的染料敏化剂较以噻吩环为桥键的染料敏化剂具有更好的光电流和光电压,因此四种染料敏化剂中,以苯基作为桥键,氰基乙酸作为受体的染料敏化剂获得较佳的光电转换效率5.28%(J_(SC)=9.14 mA/cm~2,V_(OC)=0.74 V,FF=0.78).  相似文献   

5.
对芴-呋喃苯并噻二唑共聚物的吸收光谱、光致发光光谱、电致发光性能和光伏性能进行了研究. 共聚物在382 nm和530 nm处有两处明显的吸收峰, 其中530 nm处的吸收强度随着共聚物中呋喃苯并噻二唑单元(FBT)含量的增加而增加. 随着FBT单元含量的增加, 电致发光峰值从611 nm红移至702 nm. 以PVK为空穴传输层, 共聚物PFO- FBT0.1为发光层的发光器件, 在33 mA/cm2电流密度下的外量子效率达2.32%, 亮度为441 cd/m2. 实验中观察到快速的链内能量陷阱过程(从芴到FBT单元). 以共聚物PFO-FBT50为电子给体、PCBM为电子受体(重量比1:2)共混制备的光电池能量转换效率为1.13%, 开路电压0.85 V, 短路电流3.39 mA/cm2, 光谱响应边延伸至近750 nm.  相似文献   

6.
基于1,2,4-三氮唑衍生物的共轭聚合物的合成及其光伏性能   总被引:1,自引:0,他引:1  
李新炜  赵斌  曹镇财  沈平  谭松庭 《化学学报》2012,70(23):2433-2439
以缺电子的1,2,4-三氮唑衍生物作为拉电子结构单元(A), 以富电子的噻吩或苯并二噻吩衍生物作为推电子结构单元(D), 通过Stille偶联聚合的方法, 合成了三种主链型D-A(推-拉电子结构)的交替共聚物PT-TZ, PB-TZ和PB-TTZT. 不同富电子结构单元可使其聚合物表现出不同的光物理性能和光伏性能. 嵌入较多的噻吩单元, 可有效增大聚合物主链的共轭长度, 拓宽其吸收光谱, 因此, 聚合物PB-TTZT的光伏性能明显优于另外两种聚合物. 以三种聚合物分别作为给体材料, 以PC61BM作为受体材料, 制备了聚合物太阳能电池(PSCs), 其中, 基于PB-TTZT的PSCs器件在AM 1.5 G模拟太阳光条件下的光电转换效率为1.18%.  相似文献   

7.
陈灵芳  李志建  叶镇权  王文 《合成化学》2018,26(11):802-808
以N-(4-巯基苯基)乙酰胺、7-(溴甲基)十五烷和二溴萘二羧酸酐为原料合成了侧链为烷基硫苯的萘二酰亚胺(NDI)衍生物,将其作为受体单元,硒吩衍生物为给体单元,合成了基于NDI的新型聚合物受体(PNDI PSHD),同时合成了基于苯并二噻吩的D-A型共聚物PBDT(T) TPD作为给体材料,将聚合物给体、受体混合制备聚合物太阳能器件。聚合物的结构和光电性能经1H NMR、 GPC、 UV、 CV和荧光发射光谱表征,并测试了器件的光伏性能。结果表明:给受体聚合物均具有较高的相对分子量,在太阳光范围具有强而宽的吸收,同时具有相对较低的最高电子占用轨道(HOMO)和最低电子未占用轨道(LUMO)能级,给受体聚合物混合后引起荧光猝灭,器件的能量转换效率(PCE)达到0.72%。  相似文献   

8.
有机太阳能电池(OSCs)活性层中的给体材料主要包括共轭聚合物与有机小分子,由于有机小分子给体具有结构确定、易于提纯、重复性高等独特的优势,近年来受到研究工作者的广泛关注。本工作中,我们采取具有良好共平面性的三联苯并二噻吩(TriBDT-T)为推电子(D)中心共轭单元,分别以罗丹宁(RN)、氰基罗丹宁(RCN)和1,3-茚二酮(IDO)为拉电子(A)共轭端基,设计并合成了三种具有A-D-A型结构的小分子给体材料TriBDT-T-RN、TriBDT-T-RCN和TriBDT-T-IDO。我们对比研究了三种端基对其热分解温度、吸收光谱和分子能级等基本性能的影响,并分别将三种小分子给体与非富勒烯型受体材料IT-4F共混制备器件,详细研究了活性层形貌与光伏性能之间的关系。结果表明,不同的A型端基对小分子给体材料的光学性能、电化学性能、光伏器件中活性层的微观形貌以及能量转换效率(PCE)产生显著影响。基于TriBDTT-RN:IT-4F、TriBDT-T-RCN:IT-4F和TriBDT-T-IDO:IT-4F的光伏器件的能量转换效率分别为9.25%、6.31%和6.18%。  相似文献   

9.
设计了四个以四联噻吩为中心给电子单元,联二噻吩为末端给电子单元,不同功能的苯并噻二唑(DOBT,BT,FBT和FFBT)为吸电子单元的有机小分子太阳能电池给体材料,分别称为DOBT-8T, BT-8T, FBT-8T和FFBT-8T.在B3LYP/6-31G(d)基组的水平上利用密度泛函和含时密度泛函理论对四个小分子进行了理论计算.详细分析了吸电子单元苯并噻二唑的结构修饰对小分子给体材料性能的影响.理论计算结果显示,不同功能的苯并噻二唑单元的引入对小分子给体材料的几何结构、禁带宽度、HOMO与LUMO能级、轨道电子密度分配、能量驱动力、开路电压和分子中的原子电荷(NPA)都有重要调节作用.相比于其它分子,以FBT为吸电子单元的FBT-8T,显示了最窄的带隙和较低的HOMO能级值.以FFBT为吸电子单元的FFBT-8T,获得了最低的HOMO能级和较为合适的禁带宽度.利用Scharber模型分别计算了基于小分子/PC61BM为活性层的光伏器件的能量转换效率(PCE),基于FBT-8T/PC_(61)BM和FFBT-8T/PC_(61)BM的光伏器件,将获得的PCE分别高达约4.7%和5.2%.在以上研究的基础上,推测FBT-8T和FFBT-8T是潜在的高性能的有机小分子体异质结光伏给体材料.  相似文献   

10.
综述了以p-型共轭聚合物为给体、n-型有机半导体为受体的非富勒烯聚合物太阳电池光伏材料最新研究进展,包括n-型共轭聚合物和可溶液加工小分子n-型有机半导体(n-OS)受体光伏材料,以及与之匹配的p-型共轭聚合物给体光伏材料.介绍的n-型共轭聚合物受体光伏材料包括基于苝酰亚胺(BDI)、萘酰亚胺(NDI)以及新型硼氮键连受体单元的D-A共聚物受体光伏材料,目前基于聚合物给体(J51)和聚合物受体(N2200)的全聚合物太阳电池的能量转换效率最高达到8.26%.n-OS小分子受体光伏材料包括基于BDI和NDI单元的有机分子、基于稠环中心给体单元的A-D-A型窄带隙有机小分子受体材料等.给体光伏材料包括基于齐聚噻吩和苯并二噻吩(BDT)给体单元的D-A共聚物,重点介绍与窄带隙A-D-A结构小分子受体吸收互补的、基于噻吩取代BDT单元的中间带隙二维共轭聚合物给体光伏材料.使用中间带隙的p-型共轭聚合物为给体、窄带隙A-D-A结构有机小分子为受体的非富勒烯聚合物太阳电池能量转换效率已经突破12%,展示了光明的前景.最后对非富勒烯聚合物太阳电池将来的发展进行了展望.  相似文献   

11.
设计了四个以四联噻吩为中心给电子单元,联二噻吩为末端给电子单元,不同功能的苯并噻二唑(DOBT,BT,FBT和FFBT)为吸电子单元的有机小分子太阳能电池给体材料,分别称为DOBT-8T,BT-8T,FBT-8T和FFBT-8T.在B3LYP/6-31G(d)基组的水平上利用密度泛函和含时密度泛函理论对四个小分子进行了理论计算.详细分析了吸电子单元苯并噻二唑的结构修饰对小分子给体材料性能的影响.理论计算结果显示,不同功能的苯并噻二唑单元的引入对小分子给体材料的几何结构、禁带宽度、HOMO与LUMO能级、轨道电子密度分配、能量驱动力、开路电压和分子中的原子电荷(NPA)都有重要调节作用.相比于其它分子,以FBT为吸电子单元的FBT-8T,显示了最窄的带隙和较低的HOMO能级值.以FFBT为吸电子单元的FFBT-8T,获得了最低的HOMO能级和较为合适的禁带宽度.利用Scharber模型分别计算了基于小分子/PC61BM为活性层的光伏器件的能量转换效率(PCE),基于FBT-8T/PC61BM和FFBT-8T/PC61BM的光伏器件,将获得的PCE分别高达约4.7%和5.2%.在以上研究的基础上,推测FBT-8T和FFBT-8T是潜在的高性能的有机小分子体异质结光伏给体材料.  相似文献   

12.
用Suzuki缩聚反应分别将窄带隙单元-苯并噻二唑-二苯胺(DPABT)和苯并噻二唑-三苯胺(TPABT)引入聚芴主链,合成了共聚物PF-DPABT和PF-TPABT,并比较了共聚物的发光性能.随着窄带隙单元含量的增加,其特征发射逐渐增强,说明发生了从聚合物主体单元到窄带隙单元有效的能量转移.两种共聚物在低窄带隙单元含量(1mol%)下的电致发光光谱仅出现窄带隙单元的特征发射,PF-DPABT共聚物为650~680nm之间的饱和红光,而PF-TPABT共聚物为590~610nm之间的橙红光,聚芴主体单元的发射被完全淬灭,说明与光致发光过程相比,电致发光过程中的能量转移更完全.基于共聚物PF-DPABT-1及PF-TPABT-5器件的最大外量子效率分别为1.3%和2.0%,器件结构为ITO/PEDOT:PSS/polymer/Ba/Al,是一类有希望的红光材料.  相似文献   

13.
数十年来, 有机太阳能电池(organic solar cells, OSCs)的相关研究进展迅速, 其能量转换效率从2000年的不足5%, 发展至今已经超过18%, 而这主要得益于给体和非富勒烯受体有机光伏材料的不断推陈出新. 苯并三氮唑(benzotriazoles, BTA)作为一种经典的缺电子型杂环单元, 伴随着有机光伏领域的兴起与发展, 由BTA单元构筑的聚合物给体、小分子给体、非富勒烯小分子受体以及聚合物受体材料被不断地设计合成出来, 特别是J系列聚合物给体材料和Y系列非富勒烯受体材料. 伴随着材料体系的不断优化, 相关的分子设计策略也得到更新与完善, 以期从多角度对OSCs的性能有针对性的进行调控. 本综述旨在通过介绍基于BTA单元的有机光伏材料的相关研究进展以及与之相关的分子设计策略, 回顾BTA类光伏材料数十年来的发展历程, 并展望其未来的发展前景.  相似文献   

14.
选用苯并二噻吩(BDT)类衍生物作为给体单元D,并选用噻吩并吡咯二酮(TPD)类衍生物(A1)和噻吩并吡嗪(TP)类衍生物(A2)作为共同的受体单元,通过Stille偶联聚合制备了-(DA_1)_m-(D-A_2)_n-型三元无规共聚物,并同时合成了基于BDT和TP的二元共聚物。采用核磁共振氢谱(1 H-NMR)、凝胶液相色谱(GPC)和热重(TG)表征聚合物的结构与性能;采用紫外-可见光谱和循环伏安法测试聚合物的光电性能,研究了以这类聚合物为给体材料制备的太阳能器件的光伏性能。结果表明:三元无规共聚物具有较高的相对分子量和热稳定性,在太阳光范围具有强而宽的吸收,同时具有相对较低的最高电子占用轨道HOMO和最低电子占用轨道LUMO能级。基于三元无规共聚物P2的器件,其光电转换效率可达到1.22%,优于相应的二元共聚物P1的1.15%。  相似文献   

15.
为了进一步提高电池的开路电压, 把吡啶并吡嗪核上的甲氧基苯换成辛氧基苯, 设计合成了一系列以三苯胺为给体、辛氧基苯取代的吡啶并[3,4-b]吡嗪为辅助受体、噻吩(呋喃、苯)为π-链、氰基乙酸为受体的新型染料敏化剂(OPP-I~Ⅲ). 对OPP-I~Ⅲ的光电化学性质、器件性能以及电荷转移动力学等进行了系统的测试及研究. 实验结果表明, 用辛氧基取代甲氧基, 能有效减少染料在TiO2表面的聚集, 同时能阻止电解质和TiO2导带的接触, 抑制电荷复合, 提高了开路电压. 最后, 在AM 1.5(100 mW·cm-2)光强条件下, OPP-I敏化的电池最大光电转换效率为 6.57%(短路电流为 11.7 mA·cm-2, 开路电压为 717 mV, 填充因子为 0.78).  相似文献   

16.
设计合成了4种以菲并二氧化噻二唑结构为电子受体、三苯胺或N,N-二(4-正丁基苯基)苯胺结构为电子给体的D-A-D型纯有机功能染料5a,5b,6a和6b.利用紫外-可见吸收光谱、荧光发射光谱、循环伏安曲线及理论计算对该染料的光学、电化学性质进行了研究.结果表明,染料5a,5b,6a和6b在可见光区域均有较宽的吸收带,其最大吸收波长分别为581,619,644和671 nm.  相似文献   

17.
以二噻吩[3,2-b:2',3'-d]并吡咯为电子给体单元、2,1,3-苯并噻二唑为电子受体单元.通过Stille偶联反应合成了4个含不同烷基取代基的给体-受体(D-A)型共轭齐聚物,即O-D3,O-D2P1,O-D1P2和O-P3,它们分别含有3~0个正十二烷基(D=dodecyl)和0~3个支化烷基链戊基己基(P=...  相似文献   

18.
合成了两个不同受体的共轭聚合物联噻唑-苯并噻二唑-咔唑共聚物(HSD-5);四氟苯-并二噻吩-咔唑共聚物(HSD-7),研究了其热学、光物理和光伏性质.由电化学结果显示两个聚合物的带隙分别为2.16和2.53 e V.用聚合物/[6,6]-苯基-C71-丁酸甲酯(PC71BM)作为活性层构筑了本体异质结聚合物太阳能电池的能量转换效率分别为0.36%和0.73%.同时,研究表明含氟材料由于碳-氟键高度极化改变了聚合物分子间的作用力,对活性层的形貌产生显著影响;多元受体单元间较大的扭转角会降低共轭电子离域程度,不利于分子内因电荷转移对光子的吸收,拓宽了聚合物的能带隙.最后,结合实验结果分析了两种材料制备的器件能量转换效率较低的原因.  相似文献   

19.
三元策略是提升器件光电转换效率的重要途径.本文设计合成了基于苯并噻二唑并二噻吩桥联基团的宽带隙小分子给体DRDTBT,并将其作为有机太阳能电池中的第三组分.通过引入具有缺电子性质的苯并噻二唑并二噻吩单元,使DRDTBT获得了较低的最高占有轨道能级以及高的结晶性,将其作为第三组分引入基于PM6∶BTP-eC9的器件中时有效提升了器件的开路电压,活性层形貌也得到了更好的调节.得益于提升的开路电压和填充因子,三元器件取得了优于二元器件的光电转换效率,其开路电压为0.86 V,短路电流密度为26.99 mA/cm2,填充因子为76.34%,最终取得了17.72%的高光电转换效率,证明将高结晶性缺电子单元引入小分子给体第三组分中是提升三元有机太阳能电池效率的有效途径.  相似文献   

20.
系统研究了含有不同杂原子的共轭单元(联呋喃、联噻吩及联硒酚)的三种有机染料C210、C214和C216的超快发光动力学,双己氧基取代的三苯胺作为电子给体,氰基丙烯酸作为电子受体。详细考察了三种染料分别在不同媒介中的激发态动力学:四氢呋喃及甲苯溶液、聚甲基丙烯酸甲酯及聚苯乙烯聚合物薄膜、氧化铝及二氧化钛薄膜表面。发现在以上介质中都普遍存在动态斯托克斯位移现象,表明发生了非平衡激发态的分子内多步弛豫过程。由于扭转弛豫和电子注入过程之间的竞争作用,非平衡激发态的电子注入产率比平衡激发态的低得多。此外,由于激发态能量弛豫导致的能量损失,电子注入时间常数变化超过了一个数量级,这在未来的染料设计及器件发展中应进行控制。三种染料在平衡激发态处的电子注入效率相近,由于C210和C216加快的电子注入速率补足了它们较C214小的平衡激发态寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号