首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title reaction was theoretically investigated, where cis-[RhH(2)(PH(3))(3)](+) and cis-[RhH(2)(PH(3))(2)(H(2)O)](+) were adopted as models of the catalyst. The first step of the catalytic cycle is the CO(2) insertion into the Rh(III)-H bond, of which the activation barrier (E(a)) is 47.2 and 28.4 kcal/mol in cis-[RhH(2)(PH(3))(3)](+) and cis-[RhH(2)(PH(3))(2)(H(2)O)](+), respectively, where DFT(B3LYP)-calculated E(a) values (kcal/mol unit) are given hereafter. These results indicate that an active species is not cis-[RhH(2)(PH(3))(3)](+) but cis-[RhH(2)(PH(3))(2)(H(2)O)](+). After the CO(2) insertion, two reaction courses are possible. In one course, the reaction proceeds through isomerization (E(a) = 2.8) of [RhH(eta(1)- OCOH)(PH(3))(2)(H(2)O)(2)](+), five-centered H-OCOH reductive elimination (E(a) = 2.7), and oxidative addition of H(2) to [Rh(PH(3))(2)(H(2)O)(2)](+) (E(a) = 5.8). In the other one, the reaction proceeds through isomerization of [RhH(eta(1)-OCOH)(PH(3))(2)(H(2)O)(H(2))](+) (E(a) = 5.9) and six-centered sigma-bond metathesis of [RhH(eta(1)-OCOH)(PH(3))(2)(H(2)O)](+) with H(2) (no barrier). RhH(PH(3))(2)-catalyzed hydrogenation of CO(2) proceeds through CO(2) insertion (E(a) = 1.6) and either the isomerization of Rh(eta(1)-OCOH)(PH(3))(2)(H(2)) (E(a) = 6.1) followed by the six-centered sigma-bond metathesis (E(a) = 0.3) or H(2) oxidative addition to Rh(eta(1)-OCOH)(PH(3))(2) (E(a) = 7.3) followed by isomerization of RhH(2)(eta(1)-OCOH)(PH(3))(2) (E(a) = 6.2) and the five-centered H-OCOH reductive elimination (E(a) = 1.9). From these results and our previous results of RuH(2)(PH(3))(4)-catalyzed hydrogenation of CO(2) (J. Am. Chem. Soc. 2000, 122, 3867), detailed discussion is presented concerning differences among Rh(III), Rh(I), and Ru(II) complexes.  相似文献   

2.
The mechanisms of three closely related reactions were studied in detail by means of DFT/B3 LYP calculations with a VDZP basis set. Those reactions correspond to 1) the reductive elimination of methane from [Zr(eta5-Ind)2(CH3)(H)] (Ind=C9H7-, indenyl), 2) the formation of the THF adduct, [Zr(eta5-Ind)(eta6-Ind)(thf)] and 3) the interconversion between the two indenyl ligands in the Zr sandwich complex, [Zr(eta5-Ind)(eta9-Ind)], which forms the link between the two former reactions. An analysis of the electronic structure of this species indicates a saturated 18-electron complex. A full understanding of the indenyl interchange process required the characterisation of several isomers of the Zr-bis(indenyl) species, corresponding to different spin states (S=0 and S=1), different coordination modes of the two indenyl ligands (eta5/eta9, eta5/eta5 and eta6/eta9), and three conformations for each isomer (syn, anti, and gauche). The fluxionality observed was found to occur in a mechanism involving bis(eta5-Ind) intermediates, and the calculated activation energy (11-14 kcal mol(-1)) compares very well with the experimental values. Two alternative mechanisms were explored for the reductive elimination of methane from the methyl/hydride complex. In the more favourable one, the initial complex, [Zr(eta5-Ind)2(CH3)(H)], yields [Zr(eta5-Ind)2] and methane in one crucial step, followed by a smooth transition of the Zr intermediate to the more stable eta5/eta9-species. The overall activation energy calculated (Ea=29 kcal mol(-1)) compares well with experimental values for related species. The formation of the THF adduct follows a one step mechanism from the appropriate conformer of the [Zr(eta5-Ind)(eta9-Ind)] complex, producing easily (Ea=6.5 kcal mol(-1)) the known product, [Zr(eta5-Ind)(eta6-Ind)(thf)], a species previously characterised by X-ray crystallography. This complex was found to be trapped in a potential well that prevents it from evolving to the 3.4 kcal mol(-1) more stable isomer, [Zr(eta5-Ind)2(thf)], with both indenyl ligands in a eta5-coordination mode and a spin-triplet state (S=1).  相似文献   

3.
The molecular mechanism of the isomerization of 1-pentene to form (E)-2-pentene catalyzed by the bifunctional ruthenium catalyst has been investigated using density functional theory calculations. The reaction is likely to proceed through the following steps: 1) the β-H elimination to generate the ruthenium hydride intermediate; 2) the reductive elimination of the hydride intermediate to generate the nitrogen-protonated allyl intermediate; 3) the transportation of the hydrogen by the dihedral rotation with Ru–P bond acting as axis; 4) the oxidative addition to afford another hydride complex; 5) the reductive elimination of the hydride intermediate to form the C2-C3 π-coordinated agostic intermediate; 6) the coordination of the nitrogen to the ruthenium center to give the final product. The rate-determining step is the oxidative addition step (the process of the hydrogen moves to ruthenium center from the nitrogen atom) with the free energy of 31.2 kcal/mol in the acetone solvent. And the N-heterocyclic ligand in the catalyst mainly functions in the two aspects: affords an important internal-basic center (nitrogen atom) and works as a transporter of hydrogen. Our results would be helpful for experimentalists to design more effective bifunctional catalysts for isomerization of a variety of heterofunctionalized alkene derivatives.  相似文献   

4.
The C?H activation in the tandem, “merry‐go‐round”, [(dppp)Rh]‐catalyzed (dppp=1,3‐bis(diphenylphosphino)propane), four‐fold addition of norborene to PhB(OH)2 has been postulated to occur by a C(alkyl)?H oxidative addition to square‐pyramidal RhIII?H species, which in turn undergoes a C(aryl)?H reductive elimination. Our DFT calculations confirm the RhI/RhIII mechanism. At the IEFPCM(toluene, 373.15 K)/PBE0/DGDZVP level of theory, the oxidative addition barrier was calculated to be 12.9 kcal mol?1, and that of reductive elimination was 5.0 kcal mol?1. The observed selectivity of the reaction correlates well with the relative energy barriers of the cycle steps. The higher barrier (20.9 kcal mol?1) for norbornyl–Rh protonation ensures that the reaction is steered towards the 1,4‐shift (total barrier of 16.3 kcal mol?1), acting as an equilibration shuttle. The carborhodation (13.2 kcal mol?1) proceeds through a lower barrier than the protonation (16.7 kcal mol?1) of the rearranged aryl–Rh species in the absence of o‐ or m‐substituents, ensuring multiple carborhodations take place. However, for 2,5‐dimethylphenyl, which was used as a model substrate, the barrier for carborhodation is increased to 19.4 kcal mol?1, explaining the observed termination of the reaction at 1,2,3,4‐tetra(exo‐norborn‐2‐yl)benzene. Finally, calculations with (Z)‐2‐butene gave a carborhodation barrier of 20.2 kcal mol?1, suggesting that carborhodation of non‐strained, open‐chain substrates would be disfavored relative to protonation.  相似文献   

5.
We present a comprehensive theoretical investigation of the mechanism for cyclodimerization of butadiene by the generic [bis(butadiene)Ni(0)PH(3)] catalyst employing a gradient-corrected DFT method. We have explored all critical elementary steps of the whole catalytic cycle, namely, oxidative coupling of two butadienes, reductive elimination under ring closure, and allylic isomerization. Oxidative coupling of two butadienes in the [bis(butadiene)Ni(0)L] complex and reductive elimination in the [(bis(eta(3))-octadienediyl)Ni(II)L] species take place under different stereocontrol, which makes isomerization indispensable. Commencing from a preestablished equilibrium between several configurations of the [(octadienediyl)Ni(II)L] complex, the major cyclodimer products, namely, VCH, cis-1,2-DVCB, and cis,cis-COD, are formed along competing reaction paths via reductive elimination, which is found to be the overall rate-determining step. Careful exploration of different possible conceivable routes revealed that bis(eta(1)) species are not involved as critical intermediates either in reductive elimination or in isomerization along the most feasible pathway. The regulation of the selectivity of the cyclodimer formation based on both thermodynamic and kinetic considerations is outlined.  相似文献   

6.
Iridium-catalyzed borylation of benzene with diboron was theoretically investigated with the DFT method, where an iridium(I) boryl complex, Ir(Beg)(NN) 1, and an iridium(III) tris(boryl) complex, Ir(Beg)(3)(NN) 14, (eg (ethyleneglycolato) = -OCH(2)CH(2)O-, NN = HN=CHCH=NH (diim) or 2,2'-bipyridine (bpy)) were adopted as models of active species and B(2)(eg)(2) was adopted as a model of bis(pinacolato)diboron (pinacolato = -OCMe(2)CMe(2)O-). Oxidative addition of a benzene C-H sigma-bond to 1 takes place with an activation barrier (E(a)) of 11.2 kcal/mol, followed by reductive elimination of phenylborane, Ph-Beg, from Ir(Beg)(H)(Ph)(diim) with an activation barrier of 15.6 kcal/mol. Though the oxidative addition and the reductive elimination occur with moderate activation barriers, B(2)(eg)(2) much more easily reacts with 1 to afford 14 than does benzene, of which the activation barrier is very small (2.9 kcal/mol). Oxidative addition of the benzene C-H sigma-bond to 14 occurs with a moderate activation barrier of 24.2 kcal/mol to afford an unusual seven-coordinate iridium(V) complex, Ir(H)(Ph)(Beg)(3)(bpy) 16. From this complex, phenylborane Ph-Beg is produced through the reductive elimination with concomitant formation of IrH(Beg)(2)(bpy) 17, where the activation barrier is 4.9 kcal/mol. Complex 17 further reacts with diboron to form Ir(H)(Beg)(4)(bpy) (E(a) = 8.0 kcal/mol), followed by the reductive elimination of borane H-Beg (E(a) = 2.6 kcal/mol) to regenerate Ir(Beg)(3)(bpy), when diboron exists in excess in the reaction solution. After consumption of diboron, IrH(Beg)(2)(bpy) reacts with borane, H-Beg, to form Ir(H)(2)(Beg)(3) (E(a) = 21.3 kcal/mol) followed by the reductive elimination of H(2), to regenerate Ir(Beg)(3)(bpy) with concomitant formation of H(2). Formation of the iridium(III) tris(boryl) complex 14 from IrCl(diim) and diboron was also theoretically investigated; IrCl(diim) undergoes two steps of oxidative addition of diboron to afford a seven-coordinate iridium(V) complex, IrCl(Beg)(4)(NN), from which the reductive elimination of Cl-Beg takes place easily to afford 14. From these results, it should be clearly concluded that the iridium(III) tris(boryl) complex is an active species and an unusual iridium(V) species is involved as a key intermediate in the reaction. Detailed discussion is presented on the full catalytic cycle and the importance of a seven-coordinate iridium(V) intermediate.  相似文献   

7.
Carbon-carbon bond activation of diphenylacetylene and several substituted derivatives has been achieved via photolysis and studied. Pt0-acetylene complexes with eta2-coordination of the alkyne, along with the corresponding PtII C-C activated photolysis products, have been synthesized and characterized, including X-ray crystal structural analysis. While the C-C cleavage reaction occurs readily under photochemical conditions, thermal activation of the C-C bonds or formation of PtII complexes was not observed. However, the reverse reaction, C-C reductive coupling (PtII --> Pt0), did occur under thermal conditions, allowing the determination of the energy barriers for C-C bond formation from the different PtII complexes. For the reaction (dtbpe)Pt(-Ph)(-CCPh) (2) --> (dtbpe)Pt(eta2-PhCCPh) (1), DeltaG was 32.03(3) kcal/mol. In comparison, the energy barrier for the C-C bond formation in an electron-deficient system, that is, (dtbpe)Pt(C6F5)(CCC6F5) (6) --> (dtbpe)Pt(eta2-bis(pentafluorophenyl)acetylene) (5), was found to be 47.30 kcal/mol. The energy barrier for C-C bond formation was able to be tuned by electronically modifying the substrate with electron-withdrawing or electron-donating groups. Upon cleavage of the C-C bond in (dtbpe)Pt(eta2-(p-fluorophenyl-p-tolylacetylene) (9), both (dtbpe)Pt(p-fluorophenyl)(p-tolylacetylide) (10) and (dtbpe)Pt(p-tolyl)(p-fluorophenylacetylide) (11) were obtained. Kinetic studies of the reverse reaction confirmed that 10 was more stable toward the reductive coupling [the term "reductive coupling" is defined as the formation of (dtbpe)Pt(eta2-acetylene) complex from the PtII complex] than 11 by 1.22 kcal/mol, under the assumption that the transition-state energies are the same for the two pathways. The product ratio for 10 and 11 was 55:45, showing that the electron-deficient C-C bond is only slightly preferentially cleaved.  相似文献   

8.
DFT/B3LYP calculations have been carried out to study intramolecular 1,n palladium shifts (n = 3-5) between sp2 and sp3 carbon atoms in alkylarylpalladium systems. Such shifts, which also involve a concomitant exchange with a hydrogen atom of the alkylaryl ligand, are quite often a pivotal step of several organic transformations mediated by palladium complexes. We show that the intimate mechanism for the 1,3 shift corresponds to a Pd(IV) pathway, whereas a Pd(II) pathway is favored in the case of 1,5 migrations. In the case of 1,4 migrations, both mechanisms are competitive. The Pd(IV) pathway can involve either a true Pd(IV) intermediate (oxidative addition/reductive elimination mechanism) or a Pd(IV) transition state (oxidative hydrogen migration mechanism). The energy barrier is very high for the 1,3 palladium shift, making this process very unlikely, in contrast to the other ones which have enthalpy barriers ranging between 22.8 kcal mol-1 (for the 1,5 shift) and 31.9 kcal mol-1 (for the least favorable 1,4 shift studied here). All of these results are in line with our previous results for palladium shifts between two sp2 carbon atoms. In addition, the sp2 to sp3 shifts have been found to be rather exothermic owing to the possibility for the alkylaryl ligand in the product to achieve a eta3 coordination mode. This eta3 coordination mode results either from the shift itself (1,3 case) or from a subsequent rearrangement that comprises a chain-running mechanism within the alkyl chain bound to the metal (for n > 3).  相似文献   

9.
A comprehensive theoretical investigation of the mechanism for the Ni(0)-catalyzed cyclotrimerization of 1,3-butadiene by the [Ni(0)(eta(2)-butadiene)(3)] active catalyst complex is presented by employing a gradient-corrected DFT method. All critical elementary processes of the catalytic cycle have been scrutinized, namely, oxidative coupling of two butadienes, butadiene insertion into the allyl-Ni(II) bond, allylic isomerization in both octadienediyl-Ni(II) and dodecatrienediyl-Ni(II) species, and reductive elimination under ring closure. For each of these elementary steps several conceivable routes and also the different stereochemical pathways have been probed. The favorable route for oxidative coupling start from the prevalent [Ni(0)(eta(2)-butadiene)(3)] form of the active catalyst through coupling between the terminal non-coordinated carbon atoms of two reactive eta(2)-butadiene moieties; this is assisted by an ancillary butadiene in eta(2)-mode. The initial eta(3),eta(1)(C(1))-octadienediyl-Ni(II) product is the active precursor for subsequent butadiene insertion, which preferably takes place into the eta(3)-allyl-Ni(II) bond. The insertion is driven by a strong thermodynamic force. Therefore, the dodecatrienediyl-Ni(II) products, with the most favorable bis(eta(3)-allyl),Delta-trans isomers in particular, represent a thermodynamic sink. Commencing from a preestablished equilibrium between the various bis(eta(3)-allyl),Delta-trans forms of the [Ni(II)(dodecatrienediyl)] complex, the major cyclotrimer products, namely all-t-CDT, c,c,t-CDT and c,t,t-CDT, are formed along competing paths by reductive elimination under ring closure, which is shown to be rate-controlling. The all-c-CDT-generating path is completely precluded by both thermodynamic and kinetic factors, giving rise to negligibly populated bis(eta(3)-allyl),Delta-cis precursor isomers. The regulation of the selectivity of the CDT formation as well as the competition between the two reaction channels for generation of C(12)- and C(8)-cycloolefins is elucidated.  相似文献   

10.
Reductive elimination of methane occurs upon solution thermolysis of kappa(3)-Tp(Me)2Pt(IV)(CH(3))(2)H (1, Tp(Me)2 = hydridotris(3,5-dimethylpyrazolyl)borate). The platinum product of this reaction is determined by the solvent. C-D bond activation occurs after methane elimination in benzene-d(6), to yield kappa(3)-Tp(Me)2Pt(IV)(CH(3))(C(6)D(5))D (2-d(6)), which undergoes a second reductive elimination/oxidative addition reaction to yield isotopically labeled methane and kappa(3)-Tp(Me)2Pt(IV)(C(6)D(5))(2)D (3-d(11)). In contrast, kappa(2)-Tp(Me)2Pt(II)(CH(3))(NCCD(3)) (4) was obtained in the presence of acetonitrile-d(3), after elimination of methane from 1. Reductive elimination of methane from these Pt(IV) complexes follows first-order kinetics, and the observed reaction rates are nearly independent of solvent. Virtually identical activation parameters (DeltaH(++)(obs) = 35.0 +/- 1.1 kcal/mol, DeltaS(++)(obs) = 13 +/- 3 eu) were measured for the reductive elimination of methane from 1 in both benzene-d(6) and toluene-d(8). A lower energy process (DeltaH(++)(scr) = 26 +/- 1 kcal/mol, DeltaS(++)(scr) = 1 +/- 4 eu) scrambles hydrogen atoms of 1 between the methyl and hydride positions, as confirmed by monitoring the equilibration of kappa(3)-Tp(Me)()2Pt(IV)(CH(3))(2)D (1-d(1)()) with its scrambled isotopomer, kappa(3)-Tp(Me)2Pt(IV)(CH(3))(CH(2)D)H (1-d(1'). The sigma-methane complex kappa(2)-Tp(Me)2Pt(II)(CH(3))(CH(4)) is proposed as a common intermediate in both the scrambling and reductive elimination processes. Kinetic results are consistent with rate-determining dissociative loss of methane from this intermediate to produce the coordinatively unsaturated intermediate [Tp(Me)2Pt(II)(CH(3))], which reacts rapidly with solvent. The difference in activation enthalpies for the H/D scrambling and C-H reductive elimination provides a lower limit for the binding enthalpy of methane to [Tp(Me)2Pt(II)(CH(3))] of 9 +/- 2 kcal/mol.  相似文献   

11.
Density functional theory calculations (B3LYP) have been carried out to understand the mechanism and stereochemistry of an asymmetric reductive aldol reaction of benzaldehyde and tert-butyl acrylate with hydrosilanes catalyzed by Rh(Phebox-ip)(OAc)(2)(OH(2)). According to the calculations, the reaction proceeds via five steps: (1) oxidative addition of hydrosilane, (2) hydride migration to carbon-carbon double bond of tert-butyl acrylate, which determines the chirality at C2, (3) tautomerization from rhodium bound C-enolate to rhodium bound O-enolate, (4) intramolecular aldol reaction, which determines the chirality at C3 and consequently the anti/syn-selectivity, and (5) reductive elimination to release aldol product. The hydride migration is the rate-determining step with a calculated activation energy of 23.3 kcal mol(-1). In good agreement with experimental results, the formation of anti-aldolates is found to be the most favorable pathway. The observed Si-facial selectivity in both hydride migration and aldol reaction are well-rationalized by analyzing crucial transition structures. The Re-facial attack transition state is disfavored because of steric hindrance between the isopropyl group of the catalyst and the tert-butyl acrylate.  相似文献   

12.
The Cp(2)Zr-catalyzed hydrosilylation of ethylene was theoretically investigated with DFT and MP2-MP4(SDQ) methods, to clarify the reaction mechanism and the characteristic features of this reaction. Although ethylene insertion into the Zr-SiH(3) bond of Cp(2)Zr(H)(SiH(3)) needs a very large activation barrier of 41.0 (42.3) kcal/mol, ethylene is easily inserted into the Zr-H bond with a very small activation barrier of 2.1 (2.8) kcal/mol, where the activation barrier and the energy of reaction calculated with the DFT(B3LYP) method are given and in parentheses are those values which have been corrected for the zero-point energy, hereafter. Not only this ethylene insertion reaction but also the coupling reaction between Cp(2)Zr(C(2)H(4)) and SiH(4) easily takes place to afford Cp(2)Zr(H)(CH(2)CH(2)SiH(3)) and Cp(2)Zr(CH(2)CH(3))(SiH(3)) with activation barriers of 0.3 (0.7) and 5.0 (5.4) kcal/mol, respectively. This coupling reaction involves a new type of Si-H sigma-bond activation which is similar to metathesis. The important interaction in the coupling reaction is the bonding overlap between the d(pi)-pi bonding orbital of Cp(2)Zr(C(2)H(4)) and the Si-H sigma orbital. The final step is neither direct C-H nor Si-C reductive elimination, because both reductive eliminations occur with a very large activation barrier and significantly large endothermicity. This is because the d orbital of Cp(2)Zr is at a high energy. On the other hand, ethylene-assisted C-H reductive elimination easily occurs with a small activation barrier, 5.0 (7.5) kcal/mol, and considerably large exothermicity, -10.6 (-7.1) kcal/mol. Also, ethylene-assisted Si-C reductive elimination and metatheses of Cp(2)Zr(H)(CH(2)CH(2)SiH(3)) and Cp(2)Zr(CH(2)CH(3))(SiH(3)) with SiH(4) take place with moderate activation barriers, 26.5 (30.7), 18.4 (20.5), and 28.3 (31.5) kcal/mol, respectively. From these results, it is clearly concluded that the most favorable catalytic cycle of the Cp(2)Zr-catalyzed hydrosilylation of ethylene consists of the coupling reaction of Cp(2)Zr(C(2)H(4)) with SiH(4) followed by the ethylene-assisted C-H reductive elimination.  相似文献   

13.
Reductive elimination of methane from methyl hydride half-sandwich phosphane complexes of the Group 9 metals has been investigated by DFT calculations on the model system [CpM(PH(3))(CH(3))(H)] (M = Co, Rh, Ir). For each metal, the unsaturated product has a triplet ground state; thus, spin crossover occurs during the reaction. All relevant stationary points on the two potential energy surfaces (PES) and the minimum energy crossing point (MECP) were optimized. Spin crossover occurs very near the sigma-CH(4) complex local minimum for the Co system, whereas the heavier Rh and Ir systems remain in the singlet state until the CH(4) molecule is almost completely expelled from the metal coordination sphere. No local sigma-CH(4) minimum was found for the Ir system. The energetic profiles agree with the nonexistence of the Co(III) methyl hydride complex and with the greater thermal stability of the Ir complex relative to the Rh complex. Reductive elimination of methane from the related oxidized complexes [CpM(PH(3))(CH(3))(H)](+) (M = Rh, Ir) proceeds entirely on the spin doublet PES, because the 15-electron [CpM(PH(3))](+) products have a doublet ground state. This process is thermodynamically favored by about 25 kcal mol(-1) relative to the corresponding neutral system. It is essentially barrierless for the Rh system and has a relatively small barrier (ca. 7.5 kcal mol(-1)) for the Ir system. In both cases, the reaction involves a sigma-CH(4) intermediate. Reductive elimination of ethane from [CpM(PH(3))(CH(3))(2)](+) (M = Rh, Ir) shows a similar thermodynamic profile, but is kinetically quite different from methane elimination from [CpM(PH(3))(CH(3))(H)](+): the reductive elimination barrier is much greater and does not involve a sigma-complex intermediate. The large difference in the calculated activation barriers (ca. 12.0 and ca. 30.5 kcal mol(-1) for the Rh and Ir systems, respectively) agrees with the experimental observation, for related systems, of oxidatively induced ethane elimination when M = Rh, whereas the related Ir systems prefer to decompose by alternative pathways.  相似文献   

14.
The fluoride congener of Wilkinson's catalyst, [(Ph(3)P)(3)RhF] (1), has been synthesized and fully characterized. Unlike Wilkinson's catalyst, 1 easily activates the inert C-Cl bond of ArCl (Ar = Ph, p-tolyl) under mild conditions (3 h at 80 degrees C) to produce trans-[(Ph(3)P)(2)Rh(Ph(2)PF)(Cl)] (2) and ArPh as a result of C-Cl, Rh-F, and P-C bond cleavage and C-C, Rh-Cl, and P-F bond formation. In benzene (2-3 h at 80 degrees C), 1 decomposes to a 1:1 mixture of trans-[(Ph(3)P)(2)Rh(Ph(2)PF)(F)] (3) and the cyclometalated complex [(Ph(3)P)(2)Rh(Ph(2)PC(6)H(4))] (4). Both the chloroarene activation and the thermal decomposition reactions have been shown to occur via the facile and reversible F/Ph rearrangement reaction of 1 to cis-[(Ph(3)P)(2)Rh(Ph)(Ph(2)PF)] (5), which has been isolated and fully characterized. Kinetic studies of the F/Ph rearrangement, an intramolecular process not influenced by extra phosphine, have led to the determination of E(a) = 22.7 +/- 1.2 kcal mol(-)(1), DeltaH(++) = 22.0 +/- 1.2 kcal mol(-)(1), and DeltaS(++) = -10.0 +/- 3.7 eu. Theoretical studies of F/Ph exchange with the [(PH(3))(2)(PH(2)Ph)RhF] model system pointed to two possible mechanisms: (i) Ph transfer to Rh followed by F transfer to P (formally oxidative addition followed by reductive elimination, pathway 1) and (ii) F transfer to produce a metallophosphorane with subsequent Ph transfer to Rh (pathway 2). Although pathway 1 cannot be ruled out completely, the metallophosphorane mechanism finds more support from both our own and previously reported observations. Possible involvement of metallophosphorane intermediates in various P-F, P-O, and P-C bond-forming reactions at a metal center is discussed.  相似文献   

15.
RhCl(PMe3)3 (1) reacts with benzene under irradiation to give the oxidative addition product, Rh(C6H5)(H)Cl(PMe3)3 (2). The reaction is promoted under CO2 atmosphere. The structure of 2 was fully characterized by X-ray crystallography as well as NMR, IR, and elemental analysis. The adduct (2) is unstable in solution even at room temperature to regenerate benzene and 1. The thermolysis of 2 under a CO atmosphere produces benzaldehyde along with the reductive elimination product, benzene. On the other hand, the prolonged photoreaction of 1 with benzene under CO2 resulted in the activation of the C-H bond and CO2 to yield Rh(C6H5)(eta2-CO3)(PMe3)3 (3).  相似文献   

16.
Readily prepared and bench-stable rhodium complexes containing methylene bridged diphosphine ligands, viz. [Rh(C(6)H(5)F)(R(2)PCH(2)PR'(2))][BAr(F)(4)] (R, R' = (t)Bu or Cy; Ar(F) = C(6)H(3)-3,5-(CF(3))(2)), are shown to be practical and very efficient precatalysts for the intermolecular hydroacylation of a wide variety of unactivated alkenes and alkynes with β-S-substituted aldehydes. Intermediate acyl hydride complexes [Rh((t)Bu(2)PCH(2)P(t)Bu(2))H{κ(2)(S,C)-SMe(C(6)H(4)CO)}(L)](+) (L = acetone, MeCN, [NCCH(2)BF(3)](-)) and the decarbonylation product [Rh((t)Bu(2)PCH(2)P(t)Bu(2))(CO)(SMePh)](+) have been characterized in solution and by X-ray crystallography from stoichiometric reactions employing 2-(methylthio)benzaldehdye. Analogous complexes with the phosphine 2-(diphenylphosphino)benzaldehyde are also reported. Studies indicate that through judicious choice of solvent and catalyst/substrate concentration, both decarbonylation and productive hydroacylation can be tuned to such an extent that very low catalyst loadings (0.1 mol %) and turnover frequencies of greater than 300 h(-1) can be achieved. The mechanism of catalysis has been further probed by KIE and deuterium labeling experiments. Combined with the stoichiometric studies, a mechanism is proposed in which both oxidative addition of the aldehyde to give an acyl hydride and insertion of the hydride into the alkene are reversible, with the latter occurring to give both linear and branched alkyl intermediates, although reductive elimination for the linear isomer is suggested to have a considerably lower barrier.  相似文献   

17.
2-pyridinethione (2-mercaptopyridine, H-2mp) undergoes rapid oxidative addition with 2 mol of the 17-electron organometallic radical *Cr(CO)3Cp (where Cp*=C5Me5), yielding hydride H-Cr(CO)3Cp* and thiolate (eta1-2mp)Cr(CO)3Cp*. In a slower secondary reaction, (eta1-2mp)Cr(CO)3Cp* loses CO generating the N,S-chelate complex (eta2-2mp)Cr(CO)2Cp* for which the crystal structure is reported. The rate of 2-pyridine thione oxidative addition with *Cr(CO)3Cp* (abbreviated *Cr) in toluene best fits rate=kobs[H-2mp][*Cr]; kobs(288 K)=22 +/- 4 M(-1) s(-1); DeltaH++=4 +/- 1 kcal/mol; DeltaS++=- 40 +/- 5 cal/mol K. The rate of reaction is the same under CO or Ar, and the reaction of deuterated 2-pyridine thione (D-2mp) shows a negligible (inverse) kinetic isotope effect (kD/kH=1.06 +/- 0.10). The rate of decarbonylation of (eta1-2mp)Cr(CO)3Cp* forming (eta2-2mp)Cr(CO)2Cp* obeys simple first-order kinetics with kobs (288 K)=3.1x10(-4) s(-1), DeltaH++=23 +/- 1 kcal/mol, and DeltaS++=+ 5.0 +/- 2 cal/mol K. Reaction of 4-pyridine thione (4-mercaptopyridine, H-4mp) with *Cr(CO)3Cp* in THF and CH2Cl2 also follows second-order kinetics and is approximately 2-5 times faster than H-2mp in the same solvents. The relatively rapid nature of the thione versus thiol reactions is attributed to differences in the proposed 19-electron intermediate complexes, [*(S=C5H4N-H)Cr(CO)3Cp*] versus [*(H-S-C6H5)Cr(CO)3Cp*]. In comparison, reactions of pyridyl disulfides occur by a mechanism similar to that followed by aryl disulfides involving direct attack of the sulfur-sulfur bond by the metal radical. Calorimetric data indicate Cr-SR bond strengths for aryl and pyridyl derivatives are similar. The experimental conclusions are supported by B3LYP/6-311+G(3df,2p) calculations, which also provide additional insight into the reaction pathways open to the thione/thiol tautomers. For example, the reaction between H* radical and the 2-pyridine thione S atom yielding a thionyl radical is exothermic by approximately 30 kcal/mol. In contrast, the thiuranyl radical formed from the addition of H* to the 2-pyridine thiol S atom is predicted to be unstable, eliminating either H* or HS* without barrier.  相似文献   

18.
The rhodium(I) catalyzed [2 + 2 + 1] carbocyclization of tethered diene-enes to afford substituted hexahydropentalenones with high levels of diastereoselectivity was modeled using density functional theory. Previously, this transformation was observed to be facile, whereas the analogous bis-ene substrate could not be cyclized under any reasonable conditions. To establish a conceptual understanding of the carbocyclization mechanism and to identify the functional role of the diene fragment we analyzed the simulated reaction mechanisms using the two parent systems. We discovered a thus far unrecognized, but intuitively plausible, role of the CO ligand for controlling the electron density at the metal center, which affects the feasibility of oxidative addition and reductive elimination steps that are key components of the mechanism. Our calculations suggest that the diene moiety is unique and required because of its ability to undergo a eta(2)-->eta(4) reorganization allowing for the thermoneutral expulsion of one CO ligand, which in turn generates an electron-rich, coordinatively saturated Rh(I) center that can efficiently promote the oxidative addition with a low barrier. A number of functionalization strategies were considered explicitly to derive a rational plan for optimizing the catalysis and to expose the roles of the different components of the reactant-catalyst complex.  相似文献   

19.
We have used experimental studies and DFT calculations to investigate the IrIII-catalyzed isomerization of allylic alcohols into carbonyl compounds, and the regiospecific isomerization–chlorination of allylic alcohols into α-chlorinated carbonyl compounds. The mechanism involves a hydride elimination followed by a migratory insertion step that may take place at Cβ but also at Cα with a small energy-barrier difference of 1.8 kcal mol−1. After a protonation step, calculations show that the final tautomerization can take place both at the Ir center and outside the catalytic cycle. For the isomerization–chlorination reaction, calculations show that the chlorination step takes place outside the cycle with an energy barrier much lower than that for the tautomerization to yield the saturated ketone. All the energies in the proposed mechanism are plausible, and the cycle accounts for the experimental observations.  相似文献   

20.
Pincer complexes of the type ((R)PCP)IrH(2), where ((R)PCP)Ir is [eta(3)-2,6-(R(2)PCH(2))(2)C(6)H(3)]Ir, are the most effective catalysts reported to date for the "acceptorless" dehydrogenation of alkanes to yield alkenes and free H(2). We calculate (DFT/B3LYP) that associative (A) reactions of ((Me)PCP)IrH(2) with model linear (propane, n-PrH) and cyclic (cyclohexane, CyH) alkanes may proceed via classical Ir(V) and nonclassical Ir(III)(eta(2)-H(2)) intermediates. A dissociative (D) pathway proceeds via initial loss of H(2), followed by C-H addition to ((Me)PCP)Ir. Although a slightly higher energy barrier (DeltaE(+ +)) is computed for the D pathway, the calculated free-energy barrier (DeltaG(+ +)) for the D pathway is significantly lower than that of the A pathway. Under standard thermodynamic conditions (STP), C-H addition via the D pathway has DeltaG(o)(+ +) = 36.3 kcal/mol for CyH (35.1 kcal/mol for n-PrH). However, acceptorless dehydrogenation of alkanes is thermodynamically impossible at STP. At conditions under which acceptorless dehydrogenation is thermodynamically possible (for example, T = 150 degrees C and P(H)2 = 1.0 x 10(-7) atm), DeltaG(+ +) for C-H addition to ((Me)PCP)Ir (plus a molecule of free H(2)) is very low (17.5 kcal/mol for CyH, 16.7 kcal/mol for n-PrH). Under these conditions, the rate-determining step for the D pathway is the loss of H(2) from ((Me)PCP)IrH(2) with DeltaG(D)(+ +) approximately DeltaH(D)(+ +) = 27.2 kcal/mol. For CyH, the calculated DeltaG(o)(+ +) for C-H addition to ((Me)PCP)IrH(2) on the A pathway is 35.2 kcal/mol (32.7 kcal/mol for n-PrH). At catalytic conditions, the calculated free energies of C-H addition are 31.3 and 33.7 kcal/mol for CyH and n-PrH addition, respectively. Elimination of H(2) from the resulting "seven-coordinate" Ir-species must proceed with an activation enthalpy at least as large as the enthalpy change of the elimination step itself (DeltaH approximately 11-13 kcal/mol), and with a small entropy of activation. The free energy of activation for H(2) elimination (DeltaG(A)(+ +)) is hence found to be greater than ca. 36 kcal/mol for both CyH and n-PrH under catalytic conditions. The overall free-energy barrier of the A pathway is calculated to be higher than that of the D pathway by ca. 9 kcal/mol. Reversible C-H(D) addition to ((R)PCP)IrH(2) is predicted to lead to H/D exchange, because the barriers for hydride scrambling are extremely low in the "seven-coordinate" polyhydrides. In agreement with calculation, H/D exchange is observed experimentally for several deuteriohydrocarbons with the following order of rates: C(6)D(6) > mesitylene-d(12) > n-decane-d(22) > cyclohexane-d(12). Because H/D exchange in cyclohexane-d(12) solution is not observed even after 1 week at 180 degrees C, we estimate that the experimental barrier to cyclohexane C-D addition is greater than 36.4 kcal/mol. This value is considerably greater than the experimental barrier for the full catalytic dehydrogenation cycle for cycloalkanes (ca. 31 kcal/mol). Thus, the experimental evidence, in agreement with calculation, strongly indicates that the A pathway is not kinetically viable as a segment of the "acceptorless" dehydrogenation cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号