首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Elimination of methane during thermolysis of title compounds results in the formation of σ-Ti-C bond to t-butyl or benzyl group. The t-butyl-containing titanocene methyl compound [Ti(III)Me(η5-C5Me4t-Bu)2] (5) eliminates methane at 110 °C to give cleanly [Ti(III)(η51-C5Me4CMe2CH2)(η5-C5Me4t-Bu)] (6). The methyl derivative of analogous benzyl-containing titanocene [Ti(III)Me(η5-C5Me4CH2Ph)2] was not isolated because it eliminated methane at ambient temperature to give [Ti(III)(η51-C5Me4CH2-o-C6H4)(η5-C5Me4CH2Ph)] (7) with one phenyl ring linked to titanium atom in ortho-position. The corresponding titanocene dimethyl compound [TiMe25-C5Me4t-Bu)}2] (9) eliminates two methane molecules at 110 °C to give the singly tucked-in 1,1-dimethylethane-1,2-diyl-tethered titanocene [Ti{η511-C5Me3(CH2)(CMe2CH2)}(η5-C5Me4t-Bu)] (11). In distinction, the analogous benzyl derivative [TiMe25-C5Me4CH2Ph)2] (10) eliminates at 110 °C only one methane molecule to afford [TiMe(η51-C5Me4CH2-o-C6H4)(η5-C5Me4CH2Ph)] (12) containing one phenyl group attached to titanium in o-position and one methyl group persisting on the titanium atom. This compound is stable at 150 °C for at least 3 h. The crystal structures of 5, 6, 7, and 10 were determined.  相似文献   

2.
The reactions of compound [Pt(dba)2] with ligands RCHNCH2CH2NMe2 (1a-1f) in which R is a fluorinated aryl ring produced activation of C-F bonds when two fluorine atoms are present in the ortho positions of the aryl ring or activation of C-H bonds for ligands containing only one fluoro substituent in ortho. Both C-F and C-H bond activation are favoured by an increase of the degree of fluorination of the ring. Further reaction with lithium halides produced cyclometallated platinum (II) compounds [PtX(Me2NCH2CH2NCHR)] (X = Br, Cl) (2) containing a terdentate [C,N,N′] ligand. The obtained compounds were fully characterized including a structure determination for [PtCl{Me2NCH2CH2NCH(2,4,5-C6HF3)}] (2d′).  相似文献   

3.
The allyl-substituted group 4 metal complexes [M{(R)CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti, R = CH2CHCH2, (2); R = CH2C(CH3)CH2 (3); M = Zr, R = CH2CHCH2 (4), R = CH2C(CH3)CH2 (5)] have been synthesized by the reaction of allyl ansa-magnesocene derivatives and the tetrachloride salts of the corresponding transition metal. The dialkyl complexes ] [M = Ti, R = CH2=CHCH2, R′ = Me (6), R′ = CH2Ph (7); R = CH2C(CH3)CH2, R′ = Me (8), R′ = CH2Ph (9); M = Zr, R = CH2CHCH2, R′ = Me (10), R′ = CH2Ph (11); R = CH2C(CH3)CH2, R′ = Me (12), R′ = CH2Ph (13)] have been synthesized by the reaction of the corresponding ansa-metallocene dichloride complexes 2-5 and two molar equivalents of the alkyl Grignard reagent. Compounds 2-5 reacted with H2 under catalytic conditions (Wilkinson’s catalyst or Pd/C) to give the hydrogenation products [M{(R)CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = CH2CH2CH3 (14) or R = CH2CH(CH3)2 (15); M = Zr and R = CH2CH2CH3 (16) or R = CH2CH(CH3)2 (17)]. The reactivity of 2-5 has also been tested in hydroboration and hydrosilylation reactions. The hydroboration reactions of 3, 4 and 5 with 9-borabicyclo[3.3.1]nonane (9-BBN) yielded the complexes [M{(9-BBN)CH2CH(R)CH2CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = H (18); M = Zr and R = H (19) or R = CH3 (20)]. The reaction with the silane reagents HSiMe2Cl gave the corresponding [M{ClMe2SiCH2CHRCH2CH(η5-C5Me4)(η5-C5H4)}Cl2] [M = Ti and R = H (21); M = Zr and R = H (22) or R = CH3 (23)]. The reaction of 22 with t-BuMe2SiOH produced a new complex [Zr{t-BuMe2SiOSi(Me2)CH2CH2CH2CH(η5-C5Me4)(η5-C5H4)}Cl2] (24) through the formation of Si-O-Si bonds. On the other hand, reactivity studies of some zirconocene complexes were carried out, with the insertion reaction of phenyl isocyanate (PhNCO) into the zirconium-carbon σ-bond of [Zr{(n-Bu)CH(η5-C5Me4)(η5-C5H4)}2Me2] (25) giving [{(n-Bu)CH(η5-C5Me4)(η5-C5H4)]}Zr{Me{κ2-O,N-OC(Me)NPh}] as a mixture of two isomers 26a-b. The reaction of [Zr{(n-Bu)(H)C(η5-C5Me4)(η5-C5H4)}(CH2Ph)2] (27) with CO also provided a mixture of two isomers [{(n-Bu)CH(η5-C5Me4)(η5-C5H4)]}Zr(CH2Ph){κ2-O,C-COCH2Ph}] 28a-b. The molecular structures of 4, 11, 16 and 17 have been determined by single-crystal X-ray diffraction studies.  相似文献   

4.
The reaction of [Pt2Me4(μ-SMe2)2] with ligands 4-C6H5C6H4CHNCH2CH2NMe2 (1a) and 2-C6H5C6H4CHNCH2CH2NMe2 (1b) carried out in acetone at room temperature produced compounds [PtMe2{4-C6H5C6H4CHNCH2CH2NMe2}] (2a) and [PtMe2{2-C6H5C6H4CHNCH2CH2NMe2}] (2b), respectively, in which the imines act as bidentate [N,N′] ligands. Cyclometallated [C,N,N′] compounds [PtMe{4-C6H5C6H3CHNCH2CH2NMe2}] (3a) and [PtMe{2-C6H5C6H3CHNCH2CH2NMe2}] (3b), were obtained by refluxing toluene solutions of compounds 2a or 2b. Reaction of [Pt2Me4(μ-SMe2)2] with ligands 4-C6H5C6H4CHNCH2Ph (1c) and 2-C6H5C6H4CHNCH2Ph (1d) produced compounds [PtMe{4-C6H5C6H3CHNCH2Ph}SMe2] (5c) and [PtMe{2-C6H5C6H3CHNCH2Ph}SMe2] (5d) containing a [C,N] ligand, from which triphenylphosphine derivatives 6c and 6d were also prepared. In all cases, metallation took place to yield five-membered endo-metallacycles and formation of seven-membered or of exo-metallacycles was not observed. The reactions of 3a, 3b, 6c and 6d with methyl iodide were studied in acetone and gave the corresponding cyclometallated platinum (IV) compounds. All compounds were characterised by NMR spectroscopy and compounds 3b, 4a, 6c and 6d were also characterised crystallographically.  相似文献   

5.
The oxime-substituted NCN-pincer molecules HONCH-1-C6H3(CH2NMe2)2-3,5 (2a) and HONCH-4-C6H2(CH2NMe2)2-2,6-Br-1 (2b) were accessible by treatment of the benzaldehydes H(O)C-4-C6H3(CH2NMe2)2-3,5 (1a) and H(O)C-4-C6H2(CH2NMe2)2-2,6-Br-1 (1b) with an excess of hydroxylamine. In the solid state both compounds are forming polymers with intermolecular O-H?N connectivities between the Me2NCH2 substituents and the oxime entity of further molecules of 2a and 2b, respectively. Characteristic for 2a and 2b is a helically arrangement involving a crystallographic 21 screw axis of the HONCH-1-C6H3(CH2NMe2)2-3,5 and HONCH-4-C6H2(CH2NMe2)2-2,6-Br-1 building blocks.The reaction of 2b with equimolar amounts of [Pd2(dba)3 · CHCl3] (3) (dba = dibenzylidene acetone) or [Pt(tol)2(SEt2)]2 (4) (tol = 4-tolyl) gave by an oxidative addition of the C-Br unit to M coordination polymers with a [(HONCH-4-C6H2(CH2NMe2)2-2,6)MBr] repeating unit (5: M = Pd, 6: M = Pt). Complexes 5 and 6 are in the solid state linear hydrogen-bridged polymers with O-H?Br contacts between the oxime entities and the metal-bonded bromide.  相似文献   

6.
The reaction of the tetramethylcyclopentadiene-silyl substituted derivative C5Me4(SiMe3)(SiMe2Cl) with MCl4 afforded the trichloro mono-tetramethylcyclopentadienyl complexes M(η5-C5Me4SiMe2Cl)Cl3 [M=Ti (1), Zr (2)] with selective elimination of SiMe3Cl. Compound 1 reacts with deoxygenated water in methylene chloride, with the evolution of HCl, to give the dinuclear titanium compound {Ti[μ-(η5-C5Me4SiMe2O-κO)]Cl2}2 (3), which was converted into the μ-oxo complex {Ti[μ-(η5-C5Me4SiMe2O-κO)]Cl}2(μ-O) (4) by a further hydrolysis reaction which occurred when a solution of 3 in toluene was refluxed for a long period of time in the air. Depending on the size of the alkyl ligand, reactions of the mononuclear compound 1 with an appropriate alkylating reagent rendered the peralkylated Ti(η5-C5Me4SiMe2R)R3 [R=Me (5), CH2Ph (6)] or partially alkylated {Ti[(η5-C5Me4SiMe2(CH2SiMe3)]Cl(CH2SiMe3)2} (7) compounds by a salt metathesis route. Attempts to synthesise a partially methylated or benzylated complex were unsuccessful. Treatment of the dinuclear compound 3 with four equivalents of MgClMe yielded the tetramethyl derivative {Ti[μ-(η5-C5Me4SiMe2O-κO)]Me2}2 (8), while the same reaction carried out with MgCl(CH2Ph) or Mg(CH2Ph)2·2THF gave the chloro-benzyl derivative {Ti[μ-(η5-C5Me4SiMe2O-κO)]Cl(CH2Ph)}2 (9) as an equimolar mixture of diastereomers, regardless of the molar ratio of the alkylating reagent used. All of the new compounds were characterised by elemental analysis and NMR spectroscopy.  相似文献   

7.
The dialkyl complexes, (R = Pri, R′ = Me (2a), CH2Ph (3a); R = Bun, R′ = Me (2b), CH2Ph (3b); R = But, R′ = Me (2c), CH2Ph (3c); R = Ph, R′ = Me (2d), CH2Ph (3d)), have been synthesized by the reaction of the ansa-metallocene dichloride complex, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}Cl2] (R = Pri (1a), Bun (1b), But (1c), Ph (1d)), and two molar equivalents of the alkyl Gringard reagent. The insertion reaction of the isocyanide reagent, CNC6H3Me2-2,6, into the zirconium-carbon σ-bond of 2 gave the corresponding η2-iminoacyl derivatives, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}{η2-MeCNC6H3Me2-2,6}Me] (R = Pri (4a), Bun (4b), But (4c), Ph (4d)). The molecular structures of 1b, 1c and 3b have been determined by single-crystal X-ray diffraction studies.  相似文献   

8.
A series of organotin compounds bearing two intramolecular N → Sn coordination bonds RSn(OCH2CH2NMe2)2Cl (R = Me (4), n-Bu (5), Mes (6)) were synthesized in good yields. These compounds as well as 2 (R = Ph) react with PhSnCl3 to give redistribution products RPhSnCl2 and (Me2NCH2CH2O)2SnCl2 (3). The direction of redistribution reactions is reverse to Kocheshkov reaction. DFT calculations have shown that the driving force of the reactions is formation of intramolecular N → Sn coordination bonds in (RO)2SnCl2 (3), the Lewis acid stronger than RSn(OR)2Cl (2, 4-6). The mechanism of the redistribution reaction between 2 and PhSnCl3 consists of two steps: (1) initial exchange of OCH2CH2NMe2 and Cl to give PhSn(OCH2CH2NMe2)Cl2 (7) followed by (2). Ph and OCH2CH2NMe2 exchange.  相似文献   

9.
Novel half-sandwich [C9H5(SiMe3)2]ZrCl3 (3) and sandwich [C9H5(SiMe3)2](C5Me4R)ZrCl2 (R = CH3 (1), CH2CH2NMe2 (2)) complexes were prepared and characterized. The reduction of 2 by Mg in THF lead to (η5-C9H5(SiMe3)2)[η52(C,N)-C5Me4CH2CH2N(Me)CH2]ZrH (7). The structure of 7 was proved by NMR spectroscopy data. Hydrolysis of 2 resulted in the binuclear complex ([C5Me4CH2CH2NMe2]ZrCl2)2O (6). The crystal structures of 1 and 6 were established by X-ray diffraction analysis.  相似文献   

10.
In the hydrolysis reaction of dichlorosilanes having an intramolecular coordinating atom, dcisiloxane-1,3-diols, [(OH){o-(CH3)2NCH2-C6H4}RSi]2O(R=CH2CH (1), C6H5 (2), o-(CH3)2NCH2C6H4 (3), Me (4)), were obtained in high yields. The results of the crystal structure analyses of meso-2, rac-2a, rac-2b and 3 are reported. They showed strong intramolecular hydrogen bondings between the hydroxy group and the nitrogen atom. We have also found that the diastereomeric isomerization of meso-2 to rac-2 in CDCl3 solvent containing moisture occurred to result in the 55:45 equilibrium mixtures of the isomers and vice versa.  相似文献   

11.
The reactions of ligands 4-C6H5C6H4CHNCH2CH2NMe2 (1a) and 2-C6H5C6H4CHNCH2CH2NMe2 (1b) in front of cis-[PtCl2(dmso)2] or cis-[PtPh2(SMe2)2] produced compounds [PtCl2{4-C6H5C6H4CHNCH2CH2NMe2}] (2aCl) and [PtCl2{2-C6H5C6H4CHNCH2CH2NMe2}] (2bCl) or [PtPh2{4-C6H5C6H4CHNCH2CH2NMe2}] (2aPh) and [PtPh2{2-C6H5C6H4CHNCH2CH2NMe2}] (2bPh). From all these compounds, the corresponding cyclometallated [C,N,N′] platinum(II) compounds 3aCl, 3bCl, 3aPh and 3bPh were obtained although under milder conditions and with higher yields for the phenyl derivatives. The reaction of compounds 3aPh and 3bPh with methyl iodide gave cyclometallated [C,N,N′] platinum(IV) compounds 4aPh and 4bPh of formula [PtMePhI{C6H5C6H3CHNCH2CH2NMe2}]. Compounds 3aCl and 3bCl containing a chloro ligand, although unreactive towards methyl iodide, undergo oxidative addition of chlorine to produce the corresponding platinum(IV) compounds [PtCl3{4-C6H5C6H3CHNCH2CH2NMe2}] (6aCl and 6bCl). All compounds were characterised by NMR spectroscopy and crystal structures of compounds 3bCl and 6bCl are also reported.  相似文献   

12.
Half-sandwich [η51N-C5Me4CH2-(2-C5H4N)]MCl3 (M = Ti (4), Zr (5)) and sandwich [η5-C5Me4CH2-(2-C5H4N)][η5-C5Me5]ZrCl2 (6) ring-peralkylated complexes have been prepared and characterized. Evidence of the intramolecular coordination of the side-chain pyridyl group both in 4 and 5 in solutions is provided by NMR spectroscopy data. Crystal structure of an adduct 5-py with one molecule of pyridine has been established by X-ray diffraction analysis.  相似文献   

13.
The syntheses of group 4 metal complexes containing the picolyldicarbollyl ligand DcabPyH [nido-7-HNC5H4(CH2)-8-R-7,8-C2B9H10] (2) are reported. New types of constrained geometry group 4 metal complexes (DcabPy)MCl2, [{(η5-RC2B9H9)(CH2)(η1-NC5H4)}MCl2] (M = Ti, 3; Zr, 4; R = H, a; Me, b), were prepared by the reaction of 2 with M(NMe2)2Cl2 (M = Ti, Zr). The reaction of 2 with M(NMe2)4 in toluene afforded (DcabPy)M(NMe2)2, [{(η5-RC2B9H9)(CH2)(η1-NC5H4)}M(NMe2)2] (M = Ti, 5; Zr, 6; R = H, a; Me, b), which readily reacted with Me3SiCl to yield the corresponding chloride complexes (DcabPy)MCl2 (M = Ti, 3; Zr, 4; R = H, a; Me, b). The structures of the diamido complexes (DcabPy)M(NMe2)2 (M = Ti, 5; Zr, 6) were established by X-ray diffraction studies of 5a, 5b, and 6a, which verified an η51-bonding mode derived from the dicarbollylamino ligand. Related constrained geometry catalyst CGC-type alkoxy titanium complexes, (DcabPy)Ti(OiPr)2 (7), were synthesized by the reaction of 2 with Ti(OiPr)4. Sterically less demanding phenols such as 2-Me-C6H4OH replaced the coordinated amido ligands on (DcabPy)Ti(NMe2)2 (5a) to yield aryloxy stabilized CGC complexes (DcabPy)Ti(OPhMe)2(PhMe  =  2- Me-C6H4, 8). NMR spectral data suggested that an intramolecular Ti-N coordination was intact in solution, resulting in a stable piano-stool structure with two aryloxy ligands residing in two of the leg positions. The aryloxy coordinations were further confirmed by single crystal X-ray diffraction studies on complexes (DcabPy)Ti(OPhMe)2 (8).  相似文献   

14.
Reduction of methyl-substituted titanocene dichlorides bearing pendant double bonds [TiCl25-C5Me4(CH2CMeCH2)}2] (1) and [TiCl25-C5Me4(SiMe2(CH2)2CHCH2)}2] (2) with magnesium yielded diamagnetic Ti(IV) compound [Ti{η115-C5Me3(CH2)(CH2CH(Me)CH2)}{η5-C5Me4(CH2C(Me)CH2)}] (4) and paramagnetic Ti(III) compound [Ti{η5-C5Me4(SiMe2CH2CHCHMe)}(μ-η3151(Ti:Mg){C5Me3(CH2)(SiMe2CHCHCMe)})Mg(OC4H8)2] (6), respectively. The reluctance of titanocene intermediates to undergo intramolecular cyclization to cyclopentadienyl-ring-tethered titanacycles (as typically observed) can be explained by a shortness of the 2-methylallyl group and steric hindrance of its double bond in the former case and, in the latter case, by an attack of magnesium on the titanocene intermediate, faster than cyclization reactions. The crystal structures of 4 and 6 were determined by single-crystal X-ray diffraction.  相似文献   

15.
The synthesis and characterization of zinc complexes bearing an amidodiamine ligand, (EtO)4Zn3[N(CH2CH2NMe2)2]2 (1), [(Et3CO)ZnN(CH2CH2NMe2)2]2 (2) and [(2,6-iPr2C6H3O)ZnN(CH2CH2NMe2)2]2 (3), [(Me3Si)2N]Zn[N(CH2CH2NMe2)2] (4) and [(Me3Si)2N]2Zn2(OH)[N(CH2CH2NMe2)2] (5), are reported. Compounds 13 are synthesised in the reactions of {Zn[N(CH2CH2NMe2)2]2}2 with 2 equiv. of ethanol, 3-ethyl-3-pentanol and 2,6-diisopropylphenol, respectively. Compound 4 is obtained by the reaction of Zn[N(SiMe3)2]2 with HN(CH2CH2NMe2)2, and compound 5 is synthesised by reacting 4 with 1 equiv. of H2O. Compound 4 is characterized by NMR and MS while all of the other compounds are characterized with NMR, MS, elemental analysis and single-crystal X-ray diffraction. Compound 1 is a trinuclear species containing a Zn3N2O2 core. Compounds 2 and 3 are dimeric with planar Zn2N2 rings. Compound 5 is dimeric with a planar Zn2NO ring.  相似文献   

16.
The half-sandwich complex [Ti{(η5-C5H4)B(NiPr2)N(H)iPr}(NMe2)3] (6) was prepared from (η1-C5H5)B(NiPr2)N(H)iPr (5) and [Ti(NMe2)4] with cleavage of one equivalent of HNMe2 and further converted into the corresponding constrained geometry complex [Ti{(η5-C5H4)B(NiPr2)NiPr}(NMe2)2] (7) by elimination of a second equivalent of HNMe2. Reaction of the half-sandwich complexes [Ti{(η5-C5H4)B(NiPr2)N(H)R}(NMe2)3] (R = iPr, tBu) with excess Me3SiCl yielded the corresponding dichloro complexes [Ti{(η5-C5H4)B(NiPr2)N(H)R}Cl2(NMe2)] (R = tBu (10), iPr (11)). The intermediate species [Ti{(η5-C5H4)B(NiPr2)N(H)iPr}Cl(NMe2)2] (9) could also be spectroscopically characterised. Partial hydrolysis of 10 and 11, respectively, resulted in formation of [{TiCl2(μ-{OB(NHMe2)-η5-C5H4})}2-μ-O] (12). The molecular structures of 10 and 12 have been determined by X-ray crystallographic analyses. Complex 10, when activated with MAO, was found to be a highly active styrene polymerisation catalyst while being inactive towards the polymerisation of ethylene.  相似文献   

17.
Chlorosilyl-cyclopentadienyl titanium precursors [Ti(η5-C5Me4SiMeXCl)Cl3] (X=H 2, Cl 3) were prepared by reaction of TiCl4 with the trimethylsilyl derivatives of the corresponding cyclopentadienes. Methylation of these compounds with MgClMe under appropriate conditions afforded the methyl complexes [Ti(η5-C5Me4SiMe2R)XMe2] (R=H, X=Cl 5, Me 6; R=X=Me 7). Reactions of 2 and 3 with two equivalents of LiNHtBu afforded the ansa-silyl-η-amido compounds [Ti{η5-C5Me4SiMeX(η1-NtBu)}Cl2] (X=H 8, Cl 9). Methylation of 8 gave [Ti{η5-C5Me4SiMeH(η1-NtBu)}Me2] 10. Complex 9 was also obtained by reaction of 8 with BCl3, whereas the same reaction using alternative chlorinating agents (TiCl4, HCl) resulted in deamidation to give 2, which was also converted into 3 by reaction with BCl3. All of the new compounds were characterized by NMR spectroscopy and the molecular structures of 2 and 4 were determined by X-ray diffraction methods.  相似文献   

18.
Various vinylsilanes, SiX(CHCH2)(CH3)[2-(CH3)2NCH2C6H4], and ethylsilanes, SiX(CH2CH3)(CH3)[2-(CH3)2NCH2C6H4] [X=Cl (1); OMe (2); H (3); F (4); OSiMe3 (5); NMe2 (6); Me (7)], were synthesized in order to investigate the electronic effect of vinyl group on silicon atom having an intramolecular coordination arm. The magnitude of Δδ (ethyl→vinyl for 29Si-NMR) of chlorosilane, 1, was the biggest one among 1-7. The differences of 29Si chemical shifts between vinylsilanes and ethylsilanes increased in the following order: X=Me, NMe2<H<OSiMe3<OMe<F<Cl.  相似文献   

19.
Facile ligand substitutions are observed when the neutral ruthenium cyclopropenyl complex (PPh3)[Ru]-CC(Ph)CHCN (1, [Ru] = Tp(PPh3)Ru) is treated with MeCN and pyrazole yielding the nitrile substituted ruthenium cyclopropenyl complex (MeCN)[Ru]-CC(Ph)CHCN (4a) and the ruthenium metallacyclic pyrazole complex (C3H3NN)[Ru]-CC(Ph)CH2CN (7a), respectively. The reactions of Me3SiN3 with 1, 4a and 7a are investigated. Treatment of 1 with Me3SiN3 affords in high yield the cationic N-coordinated nitrile complex {(PPh3)[Ru]NCCH(Ph)CH2CN}N3 (3). Interestingly, the reaction of 4a with Me3SiN3 in CH2Cl2 in the presence of NH4PF6 results in an insertion of four nitrogen atoms into the Ru-Cα bond to form a diastereomeric mixture of the bright yellow zwitterionic tetrazolate complex (MeCN)[Ru]-N4CCH(Ph)CH2CN (6a) in a 3:2 ratio. The reaction of 7a with Me3SiN3 gives the zwitterionic tetrazolate complex (C3H3NNH)[Ru]-N4CCH(Ph)CH2CN (9a). The two cationic tetrazolate complexes {(C3H3NNH)[Ru]-N4(R)CCH(Ph)CH2CN}+ (12a, R = CH3, 12b, R = C6H5CH2) are prepared by electrophilic addition of organic halides to 9a. All of the complexes are identified by spectroscopic methods as well as elemental analysis. Pathways for the synthesis of these compounds are proposed.  相似文献   

20.
The reaction of [Pt2Me4(μ-SMe2)2] with ligands Me2NCH2CH2NCHAr (2a, Ar=9-phenantryl; 2b, Ar=9-anthracenyl) carried out in acetone at room temperature produced the corresponding compounds [PtMe2{9-(Me2NCH2CH2NCH)C14H9}] (3) in which the imines act as bidentate [N,N] ligands. Refluxing toluene solutions of compounds 3 gave cyclometallated [C,N,N] compounds [PtMe{9-(Me2NCH2CH2NCH)C14H8}] (4) as a mixture of two isomers containing either a five- or a six-membered metallacycles for 3a and as a single isomer containing a six-membered metallacycle for 3b. The reactions of compounds 4 with acetyl chloride and with methyl iodide produced, respectively, compounds [PtCl{9-(Me2NCH2CH2NCH)C14H8}] (5) and [PtMe2I{9-(Me2NCH2CH2NCH)C14H8}] (6). All compounds were characterised by NMR spectroscopies and analytical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号