首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Titania–zirconia mixed oxides with various ZrO2 content in TiO2 (10, 50 and 90 wt.%) were prepared by the sol–gel method. High specific surface areas (77–244 m2/g) were obtained. Acidity determined by NH3-TPD and FTIR-pyridine adsorption showed that in mixed oxides the number of acid sites is dramatically increased; it varies from 173 μmol NH3/g for TiO2 to 1226–1456 μmol NH3/g for the mixed oxides. FTIR-pyridine adsorption showed the presence of Lewis sites in the catalysts. Basic sites were identified by FTIR-CO2 adsorption, suggesting the formation of mixed oxides with acid–basic properties. XRD spectra identified anatase in the TiO2 rich region, amorphous material in the mixed oxide 50–50 TiO2–ZrO2 and tetragonal and monoclinic crystalline phases in the ZrO2 rich region. Activity in the isopropanol decomposition showed a good correlation between the acid–basic properties and the selectivity to propene, acetone and isopropyl ether. The latter was found as a product which mainly depends of the acid sites density.  相似文献   

2.
John E. Ladbury   《Thermochimica Acta》2001,380(2):101-215
The road to market for drug compounds is a treacherous one, generally involving a huge temporal and financial investment. The role of structure-based drug design or lead optimisation ranges wildly in importance in different pharmaceutical companies. The adoption of these aids to provide routes to high affinity ligands has not received widespread acceptance. This is based on a number of factors, from the perceived failings of such methods, to the belief that rapid screening of compound libraries alone is the most effective way to discover drugs.

The panacea of being able to take a computer generated representation of the structure of a target site of a given biomolecule and rationally design an high affinity inhibiting compound has proved seemingly unreachable for three major reasons: (1) current capabilities in computing; (2) the requirement for atomic resolution structural detail; and (3) determination of how structural features can be related to the thermodynamics of interactions. It is the last of these points that this review seeks to address. In particular the use of isothermal titration calorimetry is discussed in the light of the accumulation of accurate thermodynamic data and examples are given where this has been applied to understand the structural aspects of formation of drug–biomolecular complexes.  相似文献   


3.
Structure and vibrational frequencies of lawsoneoxime and its C3-substituted (R=CH3, NH2, Cl, NO2) derivatives in keto and nitrosophenol forms have been obtained employing the Hartree–Fock and density functional methods. Charge distributions in different conformers have been studied using the molecular electrostatic potential topography as a tool. For all these derivatives except for nitrolawsoneoxime the amphi conformer in the keto form is predicted to be of lowest energy, which can partly be attributed to hydrogen bonding through the oximino nitrogen. In the nitro derivative, however, the preference to form a six membered ring owing to O–H–O hydrogen-bonded interactions makes the anti conformer (keto) the stablest. Further one of the nitrosophenol conformers of nitrolawsoneoxime turns out to be very close in energy (0.21 kJ mol–1 higher) to this anti conformer. The consequences of hydrogen bonding on charge distribution and vibrational spectra are discussed.  相似文献   

4.
The ground state of TiC is 3+, as predicted by previous configuration interaction calculations. It is shown that there are two low-lying 1+ states and that the density functional theory solution corresponds to the higher of the two 1+ states.Contribution to the Björn Roos Honorary Issue  相似文献   

5.
Acrylamide levels over a wide range of different food products were analysed using both liquid chromatography–tandem mass spectrometry (HPLC–MS–MS) and gas chromatography–tandem mass spectrometry (GC–MS–MS). Two different sample preparation methods for HPLC–MS–MS analysis were developed and optimised with respect to a high sample throughput on the one hand, and a robust and reliable analysis of difficult matrices on the other hand. The first method is applicable to various foods like potato chips, French fries, cereals, bread, and roasted coffee, allowing the analysis of up to 60 samples per technician and day. The second preparation method is not as simple and fast but enables analysis of difficult matrices like cacao, soluble coffee, molasses, or malt. In addition, this method produces extracts which are also well suited for GC–MS–MS analysis. GC–MS–MS has proven to be a sensitive and selective method offering two transitions for acrylamide even at low levels up to 1 μg kg−1. For the respective methods the repeatability (n=10), given as coefficient of variation, ranged from 3% (acrylamide content of 550 μg kg−1) to 12% (acrylamide content of 8 μg kg−1) depending on the food matrix. The repeatability (n=3) for different food samples spiked with acrylamide (5–1500 μg kg−1) ranged from 1 to 20% depending on the spiking level and the food matrix. The limit of quantification (referred to a signal-to-noise ratio of 9:1) was 30 μg kg−1 for HPLC–MS–MS and 5 μg kg−1 for GC–MS–MS. It could be demonstrated that measurement uncertainties were not only a result of analytical variability but also of inhomogeneity and stability of the acrylamide in food.  相似文献   

6.
Prostaglandin H synthase catalyzes the oxygenation of arachidonic acid into the cyclic endoperoxide, prostaglandin G2 (PGG2), and the subsequent reduction of PGG2 to the corresponding alcohol, prostaglandin H2 (PGH2), the precursor of all prostaglandins and thromboxanes. Both radical abstraction by a neighboring tyrosyl radical and combined radical/carbocationic models have been proposed to explain the cyclooxygenase part of this reaction. We have used density functional theory calculations to study the mechanism of the formation of the cyclooxygenated product PGG2. We found an activation free energy for the initial hydrogen abstraction by the tyrosine radical of 15.6 kcal/mol, and of 14.5 kcal/mol for peroxo bridge formation, in remarkable agreement with the experimental value of 15.0 kcal/mol. Subsequent steps of the radical-based mechanism were found to happen with smaller barriers. A combined radical/carbocation mechanism proceeding through a sigmatropic hydrogen shift was ruled out, owing to its much larger activation free energy of 36.5 kcal/mol. Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00214-003-0476-9. Electronic Supplementary MaterialSupplementary material is available in the online version of this article at Electronic Supplementary Material: Supplementary material is available in the online version of this article at  相似文献   

7.
Diaza-18-crown-6 ethers appending two pyrenyl (Py) or two carbazolyl (Cz) groups were synthesized. These macrocyclic compounds form 1:1 host–guest complexes with methyl viologen chloride (MV2+), and these complexes were assembled into monolayers by Langmuir–Blodgett technique. The generated assembly involves the general structure of donor–sensitizer–acceptor (Cz–Py–MV2+) in space, although any of the photo- and redox-active components are not covalently bonded. Photoirradiation of the pyrenyl group resulted in the charge-separated pair Cz√+–Py–MV√+ which survived up to hours in a well anaerobic atmosphere. An electrode was fabricated by transferring the L–B film on an ITO glass. The photoinduced voltage of this electrode was measured with a saturated calomel reference electrode in hydroquinone (H2Q) solution to be ca. 168 mV when the light intensity was 218 mW/cm2. This electrode was also used as the light electrode to construct a photogalvanic cell with a platinum electrode as the dark electrode. Irradiation of the light electrode with visible light results in anodic photocurrent, and there is no net chemical change associated with the function of the cell which converts light to electricity.  相似文献   

8.
The primary crystallization field of a perovskite solid solution Bi1−xSrxMnO3−δ was delimited by calculating the respective phase equilibria in the quaternary Bi–Sr–Mn–O system. The calculations are based on the recent assessment involving all three ternary subsystems, a quaternary liquid approximated as a mixture of Mn, MnO, Mn2O3, SrO and Bi2O3 species with binary Redlich–Kister coefficients and the perovskite phase described in terms of a point defect model allowing Sr2+ for Bi3+ substitution, oxygen vacancy formation and the related Mn3+/Mn4+ mixing on Mn-sublattice. The crystallization path and the composition of the crystallized solid solution are compared with single crystal growth experiments performed by self-flux method from a Bi-rich melt. The crystallization path obtained for a selected feed composition for which the largest and high quality single crystal have been grown, turns out to end very close to the global eutectic point.  相似文献   

9.
In this paper, we investigate the accuracy and precision of the results from diode array detector (DAD) data and mass spectrometry (MS) data as obtained subsequent to chromatographic separations using computer simulations. Special attention was given to simulations of multiple injections from a developing enzymatic reaction. These simulations result in three-way LC–DAD–MS kinetic data; LC–DAD and LC–MS data were also evaluated independently in this investigation. The noise characteristics of the MS detector prevent accurate determination of the individual reaction rate constants by the analysis method. Using the data from the DAD in combination with the MS detector results in improved estimation of the rate constants. The results also indicate that the higher resolving power of the MS information compensates for the lower signal-to-noise ratio in these data, compared to DAD data.  相似文献   

10.
Complete-active-space self-consistent-field calculation of the reorganisation energy, , corresponding to the strongly allowed HOMOLUMO transition in planar polyenes in the trans form (C 2 h symmetry), gives >0.5 eV. This large depends on the fact that the short and long bond lengths of the excited 1B u (or 3B u ) state compared to the 1A g ground state are almost cancelled. The emission redshift (Stokes shift) in molecules with the same type of system is quite small, however, which suggests that the Stokes shift may be dynamic, owing to the presence of another excited state at lower or about the same energy. Acknowledgement.We congratulate Björn on his birthday and at the same time thank him for the CASSCF method and for many years of collaboration and help from him and his collaborators to make this wonderful method work in our laboratory.Contribution to the Björn Roos Honorary Issue  相似文献   

11.
The Hartree–Fock–Bogoliubov (HFB) method, dealing with Bogoliubov orbitals, which consist of particle and hole part, can provide states with pair correlations associated with Cooper pairs. The dimension of HFB Fock matrices can be reduced by restrictions of spin states of Bogoliubov orbitals similarly to ordinary Hartree–Fock (HF) equations such as restricted HF (RHF), unrestricted HF (UHF), and generalized HF (GHF). However, there are few studies of moderate restricted HFB equations such as UHF‐based HFB equations. In this article, formulation and calculations of restricted HFB equations are described. The solutions of general and restricted HFB equations are compared. Pair correlations taking account of restricted and general HFB equations are discussed. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

12.
The Kekulé structure count and the permanent of the adjacency matrix of fullerenes are related to structural parameters involving the presence of contiguous pentagons p, q, r, q/p and r/p, where p is the number of edges common to two pentagons, q is the number of vertices common to three pentagons and r is the number of pairs of nonadjacent pentagons adjacent to another common pentagon. The cluster analysis of the structural parameters allows classification these parameters. Principal component analysis (PCA) of the structural parameters and the cluster analyses of the fullerenes permit their classification. PCA clearly distinguishes five classes of fullerenes. The cluster analysis of fullerenes is in agreement with PCA classification. Cluster analysis shows greatest similarity for the qq/p and rr/p pairs. PCA provides five orthogonal factors F 1F 5. The use of F 1 gives an error of 28%. The inclusion of F 2 decreases the error to 2%.From the Proceedings of the 28th Congreso de Químicos Teóricos de Expresión Latina (QUITEL 2002)  相似文献   

13.
Ti–Si–B–C–N film was deposited by DC magnetron sputtering at different argon and nitrogen ratios such as N2/Ar = 1 : 5, 2 : 4, 3 : 3, 4 : 1 and 5 : 0. The formation of TiN and TiB phases was observed because of incorporation of nitrogen. The hardness, modulus, microstructure, structure and bond formation with different nitrogen contents during the deposition were studied by nanoindentation, scanning electron microscope, X‐ray diffraction and X‐ray photoelectron spectroscopy, respectively. The oxidation kinetics of Ti–Si–B–C–N was investigated. The nitrogen incorporation during deposition influences different properties of the coating. Hardness and modulus decreased, and microstructure showed very fine grain presence, and film changes to fully amorphous because of incorporation of nitrogen in the film. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A practical means of overcoming the limitation in accuracy of conformational analysis due to incompleteness of basis sets used in ab initio calculations involves calculating the energy with a series of systematically improving basis sets and extrapolating to the basis set limit. We report here a focal-point conformational analysis for methanol. The Hartree–Fock energy converges exponentially to the basis set limit, while the convergence of second-order correlation energy is well described by the formula . This formula also describes well the convergence of fourth-order correlation energy. The height of the rotational barrier at the Hartree–Fock level can be obtained reliably by taking the difference of the extrapolated energies of the two conformations and correcting the difference for correlation effects. Electron correlation has only a small decreasing effect on the height of the rotational barrier in methanol. The focal-point value for the torsional barrier in methanol is 0.999±0.007 kcal/mol. Acknowledgement.This project was supported by Provost Funds at University of California, Santa Barbara (UCSB). The computational resources were provided partially by the National Computational Science Alliance and UCSBs Supercomputer Facility. We also acknowledge the Horgan Award (University of Missouri-Columbia) to K. K., which made possible the purchase of additional computational resources. We thank Robert Gdanitz and Bernie Kirtman for valuable discussions and Jozef Noga for providing us with a copy of the DIRCCR12-OS program.  相似文献   

15.
The 20th edition of the International Symposium on Electro‐ and Liquid‐Phase Separation Techniques (ITP2013) took place on October 6–9, 2013, at Puerto de la Cruz in Tenerife, Canary Islands (Spain). This article reviews the highlights of this new edition of the symposia, also including the different activities that took place as well as the awards presented.  相似文献   

16.
Different density functional theory (DFT) functionals have been evaluated by studying geometries and bond strengths of YbH, YbF, EuF, GdF, and NdF and compared with accurate CCSD(T) results and, when available, experiment. The agreement between the CCSD(T) results and experiment, when available, is good. The agreement is also good between bond strengths calculated at the DFT level using relativistic effective core potentials and the CCSD(T) results. However, the all-electron ADF calculations systematically overestimate binding energies. The geometries obtained by both the all-electron and the effective-core-potential-based DFT calculations are generally in good agreement with the CCSD(T) results.Contribution to the Björn Roos Honorary Issue  相似文献   

17.
18.
The electronic structure of the Ca2 molecule has been investigated by use of a two-valence-electron semiempirical pseudopotential and applying the internally contracted multireference configuration interaction method with complete-active-space self-consistent-field reference wave functions. Core–valence correlation effects have been accounted for by adding a core-polarization potential to the Hamiltonian. The ground-state properties of the Ca2 and Ca2+ dimers have also been studied at the single-reference coupled-cluster level with single and double excitations including a perturbative treatment of triple excitations. Good agreement with experiment has been obtained for the ground-state potential curve and the only experimentally known A1u+ excited state of Ca2. The spectroscopic parameters De and Re deduced from the calculated potential curves for other states are also reported. In addition, spin–orbit coupling between the singlet and triplet molecular states correlating, respectively, with the (4p)1P and (4p)3P Ca terms has been investigated using a semi-empirical two-electron spin–orbit pseudopotential. Acknowledgement.This work was supported by grant 5 P03B 082 21 from the Polish State Committee for Scientific Research (KBN).  相似文献   

19.
Water exchange on Mn centers in proteins has been modeled with density functional theory using the B3LYP functional. The reaction barrier for dissociative water exchange on [MnIV(H2O)2(OH)4] is only 9.6 kcal mol–1, corresponding to a rate of 6×105 s–1. It has also been investigated how modifications of the model complex change the exchange rate. Three cases of water exchange on Mn dimers have been modeled. The reaction barrier for dissociative exchange of a terminal water ligand on [(H2O)2(OH)2MnIV(-O)2MnIV(H2O)2(OH)2] is 8.6 kcal mol–1, while the bridging oxo group exchange with a ring-opening mechanism has a barrier of 19.2 kcal mol–1. These results are intended for interpretations of measurements of water exchange for the oxygen evolving complex of photosystem II. Finally, a tautomerization mechanism for exchange of a terminal oxyl radical has been modeled for the synthetic O2 catalyst [(terpy)(H2O)MnIV(-O)2MnIV(O)(terpy)]3+ (terpy=2,2:6,2-terpyridine). The calculated reaction barrier is 14.7 kcal mol–1.Contribution to the Björn Roos Honorary Issue  相似文献   

20.
The full capacity of contemporary parallel computers can, in the context of iterative ab initio procedures like, for example, self-consistent field (SCF) and multiconfigurational SCF, only be utilized if the disk and input/output (I/O) capacity are fully exploited before the implementation turns to an integral direct strategy. In a recent report on parallel semidirect SCF http://www.tc.cornell.edu/er/media/1996/collabrate.html, http://www.fp.mcs.anl.gd/grand-challenges/chem/nondirect/index.html it was demonstrated that super-linear speedups are achievable for algorithms that exploit scalable parallel I/O. In the I/O-intensive SCF iterations of this implementation a static load balancing, however, was employed, dictated by the initial iteration in which integral evaluation dominates the central processing unit activity and thus determines the load balancing. In the present paper we present the first implementation in which load balancing is achieved throughout the whole SCF procedure, i.e. also in subsequent iterations. The improved scalability of our new algorithm is demonstrated in some test calculations, for example, for 63-node calculation a speedup of 104 was observed in the computation of the two-electron integral contribution to the Fock matrix.Contribution to the Björn Roos Honorary Issue Acknowledgement.We thank J. Nieplocha for valuable help and making the toolkit (including ChemIO) available to us. R.L. acknowledges the Intelligent Modeling Laboratory and the University of Tokyo for financial support during his stay in Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号